Xin Yin , Xiang Li , Qian Li , Bingshu Wang , Li Zheng
{"title":"硫氧化细菌Thioclava nitratireducens M1-LQ-LJL-11的全基因组分析及其与深海热液喷口Chrysomallon squamiferum的共生关系","authors":"Xin Yin , Xiang Li , Qian Li , Bingshu Wang , Li Zheng","doi":"10.1016/j.margen.2023.101058","DOIUrl":null,"url":null,"abstract":"<div><p>One sulfur-oxidizing bacterium <em>Thioclava</em> sp. M1-LQ-LJL-11 was isolated from the gill of <em>Chrysomallon squamiferum</em> collected from 2700 m deep hydrothermal named Longqi on the southwest Indian Ocean ridge. In order to understand its survival mechanism in hydrothermal extreme environment and symbiotic relationship with its host, the complete genome of strain M1-LQ-LJL-11 was sequenced and analyzed. A total of 6117 Mb of valid data was obtained, including 4096 coding genes, 61 non coding genes, including 9 rRNAs (among them, there are 3 in 23S rRNA, 3 in 5S rRNA, and 3 in 16S rRNA.), 52 tRNAs and 35 genomic islands. Strain M1-LQ-LJL-11 contains one chromosome and two plasmids. In the genome annotation information of the strain, we found 28 genes including <em>cys sox, sor, sqr, tst</em> related to sulfur metabolism and 17 metal resistance genes. Interestingly, a pair of quorum sensing system which probably regulating biofilm formation located in chromosome was found. These genes are critical for self-adaptation against severe environment as well as host survival. This study provides a basis understanding for the adaptive strategies of deep-sea hydrothermal bacteria and symbiotic relationship with its host in extreme environments through gene level.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":"71 ","pages":"Article 101058"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete genome analysis reveals environmental adaptability of sulfur-oxidizing bacterium Thioclava nitratireducens M1-LQ-LJL-11 and symbiotic relationship with deep-sea hydrothermal vent Chrysomallon squamiferum\",\"authors\":\"Xin Yin , Xiang Li , Qian Li , Bingshu Wang , Li Zheng\",\"doi\":\"10.1016/j.margen.2023.101058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One sulfur-oxidizing bacterium <em>Thioclava</em> sp. M1-LQ-LJL-11 was isolated from the gill of <em>Chrysomallon squamiferum</em> collected from 2700 m deep hydrothermal named Longqi on the southwest Indian Ocean ridge. In order to understand its survival mechanism in hydrothermal extreme environment and symbiotic relationship with its host, the complete genome of strain M1-LQ-LJL-11 was sequenced and analyzed. A total of 6117 Mb of valid data was obtained, including 4096 coding genes, 61 non coding genes, including 9 rRNAs (among them, there are 3 in 23S rRNA, 3 in 5S rRNA, and 3 in 16S rRNA.), 52 tRNAs and 35 genomic islands. Strain M1-LQ-LJL-11 contains one chromosome and two plasmids. In the genome annotation information of the strain, we found 28 genes including <em>cys sox, sor, sqr, tst</em> related to sulfur metabolism and 17 metal resistance genes. Interestingly, a pair of quorum sensing system which probably regulating biofilm formation located in chromosome was found. These genes are critical for self-adaptation against severe environment as well as host survival. This study provides a basis understanding for the adaptive strategies of deep-sea hydrothermal bacteria and symbiotic relationship with its host in extreme environments through gene level.</p></div>\",\"PeriodicalId\":18321,\"journal\":{\"name\":\"Marine genomics\",\"volume\":\"71 \",\"pages\":\"Article 101058\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874778723000508\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778723000508","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Complete genome analysis reveals environmental adaptability of sulfur-oxidizing bacterium Thioclava nitratireducens M1-LQ-LJL-11 and symbiotic relationship with deep-sea hydrothermal vent Chrysomallon squamiferum
One sulfur-oxidizing bacterium Thioclava sp. M1-LQ-LJL-11 was isolated from the gill of Chrysomallon squamiferum collected from 2700 m deep hydrothermal named Longqi on the southwest Indian Ocean ridge. In order to understand its survival mechanism in hydrothermal extreme environment and symbiotic relationship with its host, the complete genome of strain M1-LQ-LJL-11 was sequenced and analyzed. A total of 6117 Mb of valid data was obtained, including 4096 coding genes, 61 non coding genes, including 9 rRNAs (among them, there are 3 in 23S rRNA, 3 in 5S rRNA, and 3 in 16S rRNA.), 52 tRNAs and 35 genomic islands. Strain M1-LQ-LJL-11 contains one chromosome and two plasmids. In the genome annotation information of the strain, we found 28 genes including cys sox, sor, sqr, tst related to sulfur metabolism and 17 metal resistance genes. Interestingly, a pair of quorum sensing system which probably regulating biofilm formation located in chromosome was found. These genes are critical for self-adaptation against severe environment as well as host survival. This study provides a basis understanding for the adaptive strategies of deep-sea hydrothermal bacteria and symbiotic relationship with its host in extreme environments through gene level.
期刊介绍:
The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include:
• Population genomics and ecology
• Evolutionary and developmental genomics
• Comparative genomics
• Metagenomics
• Environmental genomics
• Systems biology
More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.