诱导肿瘤细胞凋亡的多功能转化肽的生物合成。

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2023-08-21 DOI:10.1002/smll.202303035
Yufei Di, Qi Shen, Zhiwen Yang, Gang Song, Tiantian Fang, Yazhou Liu, Yamei Liu, Qun Luo, Fuyi Wang, Xuehai Yan, Haotian Bai, Yiming Huang, Fengting Lv, Shu Wang
{"title":"诱导肿瘤细胞凋亡的多功能转化肽的生物合成。","authors":"Yufei Di,&nbsp;Qi Shen,&nbsp;Zhiwen Yang,&nbsp;Gang Song,&nbsp;Tiantian Fang,&nbsp;Yazhou Liu,&nbsp;Yamei Liu,&nbsp;Qun Luo,&nbsp;Fuyi Wang,&nbsp;Xuehai Yan,&nbsp;Haotian Bai,&nbsp;Yiming Huang,&nbsp;Fengting Lv,&nbsp;Shu Wang","doi":"10.1002/smll.202303035","DOIUrl":null,"url":null,"abstract":"<p>Engineered nanomaterials hold great promise to improve the specificity of disease treatment. Herein, a fully protein-based material is obtained from nonpathogenic <i>Escherichia coli</i> (<i>E. coli</i>), which is capable of morphological transformation from globular to fibrous in situ for inducing tumor cell apoptosis. The protein-based material P1 is comprised of a β-sheet-forming peptide KLVFF, pro-apoptotic protein BAK, and GFP along with targeting moieties. The self-assembled nanoparticles of P1 transform into nanofibers in situ in the presence of cathepsin B, and the generated nanofibrils favor the dimerization of functional BH3 domain of BAK on the mitochondrial outer membrane, leading to efficient anticancer activity both in vitro and in vivo via mitochondria-dependent apoptosis through Bcl-2 pathway. To precisely manipulate the morphological transformation of biosynthetic molecules in living cells, a spatiotemporally controllable anticancer system is constructed by coating P1-expressing <i>E. coli</i> with cationic conjugated polyelectrolytes to release the peptides in situ under light irradiation. The biosynthetic peptide-based enzyme-catalytic transformation strategy in vivo would offer a novel perspective for targeted delivery and shows great potential in precision disease therapeutics.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis of Multifunctional Transformable Peptides for Inducing Tumor Cell Apoptosis\",\"authors\":\"Yufei Di,&nbsp;Qi Shen,&nbsp;Zhiwen Yang,&nbsp;Gang Song,&nbsp;Tiantian Fang,&nbsp;Yazhou Liu,&nbsp;Yamei Liu,&nbsp;Qun Luo,&nbsp;Fuyi Wang,&nbsp;Xuehai Yan,&nbsp;Haotian Bai,&nbsp;Yiming Huang,&nbsp;Fengting Lv,&nbsp;Shu Wang\",\"doi\":\"10.1002/smll.202303035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Engineered nanomaterials hold great promise to improve the specificity of disease treatment. Herein, a fully protein-based material is obtained from nonpathogenic <i>Escherichia coli</i> (<i>E. coli</i>), which is capable of morphological transformation from globular to fibrous in situ for inducing tumor cell apoptosis. The protein-based material P1 is comprised of a β-sheet-forming peptide KLVFF, pro-apoptotic protein BAK, and GFP along with targeting moieties. The self-assembled nanoparticles of P1 transform into nanofibers in situ in the presence of cathepsin B, and the generated nanofibrils favor the dimerization of functional BH3 domain of BAK on the mitochondrial outer membrane, leading to efficient anticancer activity both in vitro and in vivo via mitochondria-dependent apoptosis through Bcl-2 pathway. To precisely manipulate the morphological transformation of biosynthetic molecules in living cells, a spatiotemporally controllable anticancer system is constructed by coating P1-expressing <i>E. coli</i> with cationic conjugated polyelectrolytes to release the peptides in situ under light irradiation. The biosynthetic peptide-based enzyme-catalytic transformation strategy in vivo would offer a novel perspective for targeted delivery and shows great potential in precision disease therapeutics.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202303035\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202303035","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

工程纳米材料有望提高疾病治疗的特异性。本文从非致病性大肠杆菌(E. coli)中获得了一种完全基于蛋白质的材料,该材料能够在原位从球状形态转化为纤维状,从而诱导肿瘤细胞凋亡。蛋白基材料P1由β-薄片形成肽KLVFF、促凋亡蛋白BAK、GFP以及靶向部分组成。在组织蛋白酶B存在的情况下,自组装的P1纳米颗粒原位转化为纳米纤维,生成的纳米原纤维有利于线粒体外膜上BAK的BH3功能域的二聚化,从而通过Bcl-2途径通过线粒体依赖性凋亡在体外和体内产生有效的抗癌活性。为了精确控制生物合成分子在活细胞中的形态转化,我们构建了一个时空可控的抗癌系统,将表达p1的大肠杆菌包被阳离子共轭聚电解质,使其在光照下原位释放多肽。基于生物合成肽的酶催化转化策略为靶向递送提供了新的视角,在精确疾病治疗中显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biosynthesis of Multifunctional Transformable Peptides for Inducing Tumor Cell Apoptosis

Engineered nanomaterials hold great promise to improve the specificity of disease treatment. Herein, a fully protein-based material is obtained from nonpathogenic Escherichia coli (E. coli), which is capable of morphological transformation from globular to fibrous in situ for inducing tumor cell apoptosis. The protein-based material P1 is comprised of a β-sheet-forming peptide KLVFF, pro-apoptotic protein BAK, and GFP along with targeting moieties. The self-assembled nanoparticles of P1 transform into nanofibers in situ in the presence of cathepsin B, and the generated nanofibrils favor the dimerization of functional BH3 domain of BAK on the mitochondrial outer membrane, leading to efficient anticancer activity both in vitro and in vivo via mitochondria-dependent apoptosis through Bcl-2 pathway. To precisely manipulate the morphological transformation of biosynthetic molecules in living cells, a spatiotemporally controllable anticancer system is constructed by coating P1-expressing E. coli with cationic conjugated polyelectrolytes to release the peptides in situ under light irradiation. The biosynthetic peptide-based enzyme-catalytic transformation strategy in vivo would offer a novel perspective for targeted delivery and shows great potential in precision disease therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Designing High Donor Number Anion Additive for Stable Lithium Metal Batteries. Highly Reversible Conversion-Type CoSn2 Cathode for Fluoride-Ion Batteries. Enabling the Transport Dynamics and Interfacial Stability of Porous Si Anode Via Rigid and Flexible Carbon Encapsulation for High-Energy Lithium Storage Time-Dependent Electrical Active and Ultrasound-Responsive Calcium Titanate Implant Coating with Immunomodulation, Osteogenesis, and Customized Antibacterial Activity Azobenzene-Functionalized Semicrystalline Liquid Crystal Elastomer Springs for Underwater Soft Robotic Actuators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1