Enabling the Transport Dynamics and Interfacial Stability of Porous Si Anode Via Rigid and Flexible Carbon Encapsulation for High-Energy Lithium Storage

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-10-21 DOI:10.1002/smll.202407560
Zhongling Cheng, Huanhao Lin, Yueming Liu, Jihao Li, Hao Jiang, Haijiao Zhang
{"title":"Enabling the Transport Dynamics and Interfacial Stability of Porous Si Anode Via Rigid and Flexible Carbon Encapsulation for High-Energy Lithium Storage","authors":"Zhongling Cheng, Huanhao Lin, Yueming Liu, Jihao Li, Hao Jiang, Haijiao Zhang","doi":"10.1002/smll.202407560","DOIUrl":null,"url":null,"abstract":"The stable electrode/electrolyte interface and fast electron/ion transport channel play important roles in boosting the rate performance and cycling life of lithium-ion batteries. Herein, a porous silicon/carbon composite (pSi@PC@MC) is presented by integrating hollow porous silicon (pSi) with pitch-derived carbon (PC) and dopamine-derived mesoporous carbon (MC), employing microporous zeolite as the silicon source. The finite element simulation first reveals the stress release effect of rigid and flexible carbon encapsulation on the hollow Si anode for lithium-ion storage. In situ and ex situ characterization results further elucidate that hybrid sp<sup>2</sup>/sp<sup>3</sup> carbon coating greatly enhances the liquid/solid interface stability and the compatibility with the electrolyte, as well as facilitates the electron/ion transmission dynamics, achieving a uniform, stable, and LiF-rich SEI film, ultimately improving the lithium storage performance. As expected, the as-designed pSi@PC@MC anode delivers an impressive rate capability (756.6 mAh g<sup>−1</sup> at 6 A g<sup>−1</sup>) and excellent cycling stability with a capacity of 1650 mAh g<sup>−1</sup> after 300 cycles at 0.2 A g<sup>−1</sup>. Meanwhile, the pSi@PC@MC//NCM811 full-cell exhibits an outstanding cycling stability (75.8% capacity retention after 100 cycles). This study highlights the significance of rational porous design and effective hybrid carbon encapsulation for the development of fast-charging Si/carbon anodes.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407560","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The stable electrode/electrolyte interface and fast electron/ion transport channel play important roles in boosting the rate performance and cycling life of lithium-ion batteries. Herein, a porous silicon/carbon composite (pSi@PC@MC) is presented by integrating hollow porous silicon (pSi) with pitch-derived carbon (PC) and dopamine-derived mesoporous carbon (MC), employing microporous zeolite as the silicon source. The finite element simulation first reveals the stress release effect of rigid and flexible carbon encapsulation on the hollow Si anode for lithium-ion storage. In situ and ex situ characterization results further elucidate that hybrid sp2/sp3 carbon coating greatly enhances the liquid/solid interface stability and the compatibility with the electrolyte, as well as facilitates the electron/ion transmission dynamics, achieving a uniform, stable, and LiF-rich SEI film, ultimately improving the lithium storage performance. As expected, the as-designed pSi@PC@MC anode delivers an impressive rate capability (756.6 mAh g−1 at 6 A g−1) and excellent cycling stability with a capacity of 1650 mAh g−1 after 300 cycles at 0.2 A g−1. Meanwhile, the pSi@PC@MC//NCM811 full-cell exhibits an outstanding cycling stability (75.8% capacity retention after 100 cycles). This study highlights the significance of rational porous design and effective hybrid carbon encapsulation for the development of fast-charging Si/carbon anodes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过刚性和柔性碳封装实现多孔硅负极的传输动力学和界面稳定性,从而实现高能量锂存储
稳定的电极/电解质界面和快速的电子/离子传输通道在提高锂离子电池的速率性能和循环寿命方面发挥着重要作用。本文以微孔沸石为硅源,通过将空心多孔硅(pSi)与沥青衍生碳(PC)和多巴胺衍生介孔碳(MC)整合,提出了一种多孔硅/碳复合材料(pSi@PC@MC)。有限元模拟首先揭示了刚性和柔性碳封装对锂离子存储空心硅负极的应力释放效应。原位和非原位表征结果进一步阐明,sp2/sp3 混合碳涂层极大地增强了液/固界面的稳定性和与电解质的相容性,并促进了电子/离子传输动力学,实现了均匀、稳定和富含 LiF 的 SEI 膜,最终提高了锂离子存储性能。正如预期的那样,设计的 pSi@PC@MC 负极具有惊人的速率能力(6 A g-1 时为 756.6 mAh g-1)和出色的循环稳定性,在 0.2 A g-1 下循环 300 次后,容量达到 1650 mAh g-1。同时,pSi@PC@MC//NCM811 全电池表现出卓越的循环稳定性(100 次循环后容量保持率为 75.8%)。这项研究强调了合理的多孔设计和有效的混合碳封装对开发快速充电硅/碳阳极的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Enabling the Transport Dynamics and Interfacial Stability of Porous Si Anode Via Rigid and Flexible Carbon Encapsulation for High-Energy Lithium Storage Time-Dependent Electrical Active and Ultrasound-Responsive Calcium Titanate Implant Coating with Immunomodulation, Osteogenesis, and Customized Antibacterial Activity Azobenzene-Functionalized Semicrystalline Liquid Crystal Elastomer Springs for Underwater Soft Robotic Actuators Tuning Work Function of Fe2N@C Nanosheets by Co Doping for Enhanced Lithium Storage High Efficiency Ultra-Narrow Emission Quantum Dot Light-Emitting Diodes Enabled by Microcavity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1