蛋白质组学工具用于研究内在无序蛋白的磷酸化。

IF 3.8 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Expert Review of Proteomics Pub Date : 2023-04-01 DOI:10.1080/14789450.2023.2217359
Barbara Spolaore, Luca Secco, Giulia Rocca, Guidalberto Manfioletti, Giorgio Arrigoni, Riccardo Sgarra
{"title":"蛋白质组学工具用于研究内在无序蛋白的磷酸化。","authors":"Barbara Spolaore,&nbsp;Luca Secco,&nbsp;Giulia Rocca,&nbsp;Guidalberto Manfioletti,&nbsp;Giorgio Arrigoni,&nbsp;Riccardo Sgarra","doi":"10.1080/14789450.2023.2217359","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Intrinsically disordered proteins (IDPs) represent a family of proteins that lack secondary or tertiary structure. IDPs are hubs in interaction networks, participate in liquid-liquid phase separation processes, and drive the formation of proteinaceous membrane-less organelles. Their unfolded structure makes them particularly prone to post-translational modifications (PTMs) that play key functional modulatory roles.</p><p><strong>Areas covered: </strong>We discuss different analytical approaches to study phosphorylation of IDPs starting from methods for IDP enrichment (strong acid extractions and heat-based pre-fractionation), strategies to enrich and map phosphopeptides/proteins, and mass spectrometry-based tools to study the phosphorylation-dependent conformational alterations of IDPs (limited proteolysis, HDX, chemical cross-linking, covalent labeling, and ion mobility).</p><p><strong>Expert opinion: </strong>There is a growing interest in IDPs and their PTMs since they are involved in several diseases. The intrinsic disorder could be exploited to facilitate purification and synthetic production of IDPs taking full advantage of those structural mass-spectrometry-based methods that can be used to investigate IDPs and their phospho-dependent conformational alterations. The diffusion and implementation of mass spectrometers with ion mobility devices and electron transfer dissociation capabilities could be key-elements for increasing information on IDP biology.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteomic tools to study phosphorylation of intrinsically disordered proteins.\",\"authors\":\"Barbara Spolaore,&nbsp;Luca Secco,&nbsp;Giulia Rocca,&nbsp;Guidalberto Manfioletti,&nbsp;Giorgio Arrigoni,&nbsp;Riccardo Sgarra\",\"doi\":\"10.1080/14789450.2023.2217359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Intrinsically disordered proteins (IDPs) represent a family of proteins that lack secondary or tertiary structure. IDPs are hubs in interaction networks, participate in liquid-liquid phase separation processes, and drive the formation of proteinaceous membrane-less organelles. Their unfolded structure makes them particularly prone to post-translational modifications (PTMs) that play key functional modulatory roles.</p><p><strong>Areas covered: </strong>We discuss different analytical approaches to study phosphorylation of IDPs starting from methods for IDP enrichment (strong acid extractions and heat-based pre-fractionation), strategies to enrich and map phosphopeptides/proteins, and mass spectrometry-based tools to study the phosphorylation-dependent conformational alterations of IDPs (limited proteolysis, HDX, chemical cross-linking, covalent labeling, and ion mobility).</p><p><strong>Expert opinion: </strong>There is a growing interest in IDPs and their PTMs since they are involved in several diseases. The intrinsic disorder could be exploited to facilitate purification and synthetic production of IDPs taking full advantage of those structural mass-spectrometry-based methods that can be used to investigate IDPs and their phospho-dependent conformational alterations. The diffusion and implementation of mass spectrometers with ion mobility devices and electron transfer dissociation capabilities could be key-elements for increasing information on IDP biology.</p>\",\"PeriodicalId\":50463,\"journal\":{\"name\":\"Expert Review of Proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/14789450.2023.2217359\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2023.2217359","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

内在无序蛋白(IDPs)是一类缺乏二级或三级结构的蛋白。IDPs是相互作用网络的枢纽,参与液-液相分离过程,并驱动无蛋白膜细胞器的形成。它们未折叠的结构使它们特别容易发生翻译后修饰(ptm),而ptm起着关键的功能调节作用。涵盖的领域:我们讨论了不同的分析方法来研究IDPs的磷酸化,从IDP富集方法(强酸提取和基于热的预分离)开始,富集和绘制磷酸肽/蛋白质的策略,以及基于质谱的工具来研究IDPs磷酸化依赖的构象改变(有限的蛋白质水解,HDX,化学交联,共价标记和离子迁移)。专家意见:人们对境内流离失所者及其经前综合症的兴趣越来越大,因为他们与几种疾病有关。利用这些基于结构质谱的方法来研究IDPs及其磷酸化依赖的构象改变,可以利用内在无序性来促进IDPs的纯化和合成。具有离子迁移装置和电子转移解离能力的质谱仪的扩散和实施可能是增加IDP生物学信息的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proteomic tools to study phosphorylation of intrinsically disordered proteins.

Introduction: Intrinsically disordered proteins (IDPs) represent a family of proteins that lack secondary or tertiary structure. IDPs are hubs in interaction networks, participate in liquid-liquid phase separation processes, and drive the formation of proteinaceous membrane-less organelles. Their unfolded structure makes them particularly prone to post-translational modifications (PTMs) that play key functional modulatory roles.

Areas covered: We discuss different analytical approaches to study phosphorylation of IDPs starting from methods for IDP enrichment (strong acid extractions and heat-based pre-fractionation), strategies to enrich and map phosphopeptides/proteins, and mass spectrometry-based tools to study the phosphorylation-dependent conformational alterations of IDPs (limited proteolysis, HDX, chemical cross-linking, covalent labeling, and ion mobility).

Expert opinion: There is a growing interest in IDPs and their PTMs since they are involved in several diseases. The intrinsic disorder could be exploited to facilitate purification and synthetic production of IDPs taking full advantage of those structural mass-spectrometry-based methods that can be used to investigate IDPs and their phospho-dependent conformational alterations. The diffusion and implementation of mass spectrometers with ion mobility devices and electron transfer dissociation capabilities could be key-elements for increasing information on IDP biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Review of Proteomics
Expert Review of Proteomics 生物-生化研究方法
CiteScore
7.60
自引率
0.00%
发文量
20
审稿时长
6-12 weeks
期刊介绍: Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease. The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery. The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections: Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale Article highlights - an executive summary cutting to the author''s most critical points.
期刊最新文献
Proteomic investigations of dengue virus infection: key discoveries over the last 10 years. Advancing kidney transplant outcomes: the role of urinary proteomics in graft function monitoring and rejection detection. Data-independent acquisition in metaproteomics. Salivary metabolomics in early detection of oral squamous cell carcinoma - a meta-analysis. The potential of proteomics for in-depth bioanalytical investigations of satellite cell function in applied myology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1