Tobias Meisinger, Amelie Vogt, Robin Kretz, Helen S Hammer, Hannes Planatscher, Oliver Poetz
{"title":"Mass spectrometry-based ligand binding assays in biomedical research.","authors":"Tobias Meisinger, Amelie Vogt, Robin Kretz, Helen S Hammer, Hannes Planatscher, Oliver Poetz","doi":"10.1080/14789450.2025.2467263","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Ligand binding assays combining immunoaffinity enrichment steps with mass spectrometry (MS) readout have gained attention as a highly specific and sensitive tool for protein quantification. These techniques typically combine enzymatic fragmentation of the sample or enriched protein with capture on the protein or peptide-level for quantification. Antibodies ensure specific target recognition, while MS offers quantitative accuracy with isotopically labeled internal standards. This dual approach supports a broad dynamic range, enabling protein measurements from picomolar to nanomolar levels. These methods have diverse applications, from quantifying signaling proteins in basic research to biomarker monitoring in clinical trials and analyzing the pharmacokinetics of therapeutic proteins.</p><p><strong>Areas covered: </strong>This review delves into the diverse workflows of immunoaffinity-MS, shedding light on the innovative strategies employed, their practical applications, efficacy, and inherent limitations in the realm of protein quantification.</p><p><strong>Expert opinion: </strong>Immunoaffinity-MS has transformed protein analysis, but widespread adoption is hindered by complex workflows, high instrument costs, and limited capture molecule availability. Efforts to enhance automation, standardize workflows, and advance technological innovation aim to overcome these barriers. Improvements in mass spectrometer sensitivity, advances in recombinant capture technologies, and support from public initiatives are poised to further improve the reliability and accessibility of this method.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2025.2467263","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Ligand binding assays combining immunoaffinity enrichment steps with mass spectrometry (MS) readout have gained attention as a highly specific and sensitive tool for protein quantification. These techniques typically combine enzymatic fragmentation of the sample or enriched protein with capture on the protein or peptide-level for quantification. Antibodies ensure specific target recognition, while MS offers quantitative accuracy with isotopically labeled internal standards. This dual approach supports a broad dynamic range, enabling protein measurements from picomolar to nanomolar levels. These methods have diverse applications, from quantifying signaling proteins in basic research to biomarker monitoring in clinical trials and analyzing the pharmacokinetics of therapeutic proteins.
Areas covered: This review delves into the diverse workflows of immunoaffinity-MS, shedding light on the innovative strategies employed, their practical applications, efficacy, and inherent limitations in the realm of protein quantification.
Expert opinion: Immunoaffinity-MS has transformed protein analysis, but widespread adoption is hindered by complex workflows, high instrument costs, and limited capture molecule availability. Efforts to enhance automation, standardize workflows, and advance technological innovation aim to overcome these barriers. Improvements in mass spectrometer sensitivity, advances in recombinant capture technologies, and support from public initiatives are poised to further improve the reliability and accessibility of this method.
期刊介绍:
Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease.
The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery.
The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections:
Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale
Article highlights - an executive summary cutting to the author''s most critical points.