Yang Liu, Feng Li, Junliang Shang, Jinxing Liu, Juan Wang, Daohui Ge
{"title":"scFED:基于特征工程去噪的scRNA-Seq数据的细胞类型聚类识别。","authors":"Yang Liu, Feng Li, Junliang Shang, Jinxing Liu, Juan Wang, Daohui Ge","doi":"10.1007/s12539-023-00574-y","DOIUrl":null,"url":null,"abstract":"<p><p>Recently developed single-cell RNA-seq (scRNA-seq) technology has given researchers the chance to investigate single-cell level of disease development. Clustering is one of the most essential strategies for analyzing scRNA-seq data. Choosing high-quality feature sets can significantly enhance the outcomes of single-cell clustering and classification. But computationally burdensome and highly expressed genes cannot afford a stabilized and predictive feature set for technical reasons. In this study, we introduce scFED, a feature-engineered gene selection framework. scFED identifies prospective feature sets to eliminate the noise fluctuation. And fuse them with existing knowledge from the tissue-specific cellular taxonomy reference database (CellMatch) to avoid the influence of subjective factors. Then present a reconstruction approach for noise reduction and crucial information amplification. We apply scFED on four genuine single-cell datasets and compare it with other techniques. According to the results, scFED improves clustering, decreases dimension of the scRNA-seq data, improves cell type identification when combined with clustering algorithms, and has higher performance than other methods. Therefore, scFED offers certain benefits in scRNA-seq data gene selection.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"590-601"},"PeriodicalIF":3.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"scFED: Clustering Identifying Cell Types of scRNA-Seq Data Based on Feature Engineering Denoising.\",\"authors\":\"Yang Liu, Feng Li, Junliang Shang, Jinxing Liu, Juan Wang, Daohui Ge\",\"doi\":\"10.1007/s12539-023-00574-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently developed single-cell RNA-seq (scRNA-seq) technology has given researchers the chance to investigate single-cell level of disease development. Clustering is one of the most essential strategies for analyzing scRNA-seq data. Choosing high-quality feature sets can significantly enhance the outcomes of single-cell clustering and classification. But computationally burdensome and highly expressed genes cannot afford a stabilized and predictive feature set for technical reasons. In this study, we introduce scFED, a feature-engineered gene selection framework. scFED identifies prospective feature sets to eliminate the noise fluctuation. And fuse them with existing knowledge from the tissue-specific cellular taxonomy reference database (CellMatch) to avoid the influence of subjective factors. Then present a reconstruction approach for noise reduction and crucial information amplification. We apply scFED on four genuine single-cell datasets and compare it with other techniques. According to the results, scFED improves clustering, decreases dimension of the scRNA-seq data, improves cell type identification when combined with clustering algorithms, and has higher performance than other methods. Therefore, scFED offers certain benefits in scRNA-seq data gene selection.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"590-601\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-023-00574-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-023-00574-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
scFED: Clustering Identifying Cell Types of scRNA-Seq Data Based on Feature Engineering Denoising.
Recently developed single-cell RNA-seq (scRNA-seq) technology has given researchers the chance to investigate single-cell level of disease development. Clustering is one of the most essential strategies for analyzing scRNA-seq data. Choosing high-quality feature sets can significantly enhance the outcomes of single-cell clustering and classification. But computationally burdensome and highly expressed genes cannot afford a stabilized and predictive feature set for technical reasons. In this study, we introduce scFED, a feature-engineered gene selection framework. scFED identifies prospective feature sets to eliminate the noise fluctuation. And fuse them with existing knowledge from the tissue-specific cellular taxonomy reference database (CellMatch) to avoid the influence of subjective factors. Then present a reconstruction approach for noise reduction and crucial information amplification. We apply scFED on four genuine single-cell datasets and compare it with other techniques. According to the results, scFED improves clustering, decreases dimension of the scRNA-seq data, improves cell type identification when combined with clustering algorithms, and has higher performance than other methods. Therefore, scFED offers certain benefits in scRNA-seq data gene selection.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.