Ming Liang, Huailiang Yang, Lanyong Xu, Longqiao Cao
{"title":"奥贝胆酸治疗小鼠促进受精和繁殖。","authors":"Ming Liang, Huailiang Yang, Lanyong Xu, Longqiao Cao","doi":"10.1017/S0967199423000400","DOIUrl":null,"url":null,"abstract":"Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist, has been demonstrated to ameliorate the histopathological characteristics of liver damage. Nonetheless, the systemic safety profile of OCA with regard to reproduction and development remains poorly understood. In the present study, we conducted a dose-response experiment by administering OCA at doses of 5 mg/kg, 10 mg/kg, or 20 mg/kg through tube feeding to investigate its effect on reproductive development and fertilization rate in both male and female mice. Furthermore, we evaluated the levels of protein and mitochondrial function in the placenta through western blot, qPCR, and scanning electron microscopy. The results showed that 10 mg/kg and 20 mg/kg OCA doses significantly reduced the rate of placental implantation (P < 0.05). Also, OCA increased maternal body weight. In addition, OCA increased levels of FXR and TGR5 and produced changes in oxidative stress levels (P < 0.05). Mitochondrial activity result found that 10 mg/kg and 20 mg/kg of OCA significantly reduced the mitophagy autosomes/nucleus compared with the normal control group (P < 0.05). What is more, there was no significant difference in sperm count after OCA intervention in either C57BL/10 mice or BALB/c mice. Overall, we demonstrated that OCA treatment protected against placental implantation by suppressing placental oxidative stress and mitochondrial activity.","PeriodicalId":24075,"journal":{"name":"Zygote","volume":" ","pages":"527-536"},"PeriodicalIF":1.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obeticholic acid treatment of mice to promote fertilization and reproduction.\",\"authors\":\"Ming Liang, Huailiang Yang, Lanyong Xu, Longqiao Cao\",\"doi\":\"10.1017/S0967199423000400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist, has been demonstrated to ameliorate the histopathological characteristics of liver damage. Nonetheless, the systemic safety profile of OCA with regard to reproduction and development remains poorly understood. In the present study, we conducted a dose-response experiment by administering OCA at doses of 5 mg/kg, 10 mg/kg, or 20 mg/kg through tube feeding to investigate its effect on reproductive development and fertilization rate in both male and female mice. Furthermore, we evaluated the levels of protein and mitochondrial function in the placenta through western blot, qPCR, and scanning electron microscopy. The results showed that 10 mg/kg and 20 mg/kg OCA doses significantly reduced the rate of placental implantation (P < 0.05). Also, OCA increased maternal body weight. In addition, OCA increased levels of FXR and TGR5 and produced changes in oxidative stress levels (P < 0.05). Mitochondrial activity result found that 10 mg/kg and 20 mg/kg of OCA significantly reduced the mitophagy autosomes/nucleus compared with the normal control group (P < 0.05). What is more, there was no significant difference in sperm count after OCA intervention in either C57BL/10 mice or BALB/c mice. Overall, we demonstrated that OCA treatment protected against placental implantation by suppressing placental oxidative stress and mitochondrial activity.\",\"PeriodicalId\":24075,\"journal\":{\"name\":\"Zygote\",\"volume\":\" \",\"pages\":\"527-536\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zygote\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/S0967199423000400\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zygote","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0967199423000400","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Obeticholic acid treatment of mice to promote fertilization and reproduction.
Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist, has been demonstrated to ameliorate the histopathological characteristics of liver damage. Nonetheless, the systemic safety profile of OCA with regard to reproduction and development remains poorly understood. In the present study, we conducted a dose-response experiment by administering OCA at doses of 5 mg/kg, 10 mg/kg, or 20 mg/kg through tube feeding to investigate its effect on reproductive development and fertilization rate in both male and female mice. Furthermore, we evaluated the levels of protein and mitochondrial function in the placenta through western blot, qPCR, and scanning electron microscopy. The results showed that 10 mg/kg and 20 mg/kg OCA doses significantly reduced the rate of placental implantation (P < 0.05). Also, OCA increased maternal body weight. In addition, OCA increased levels of FXR and TGR5 and produced changes in oxidative stress levels (P < 0.05). Mitochondrial activity result found that 10 mg/kg and 20 mg/kg of OCA significantly reduced the mitophagy autosomes/nucleus compared with the normal control group (P < 0.05). What is more, there was no significant difference in sperm count after OCA intervention in either C57BL/10 mice or BALB/c mice. Overall, we demonstrated that OCA treatment protected against placental implantation by suppressing placental oxidative stress and mitochondrial activity.
期刊介绍:
An international journal dedicated to the rapid publication of original research in early embryology, Zygote covers interdisciplinary studies on gametogenesis through fertilization to gastrulation in animals and humans. The scope has been expanded to include clinical papers, molecular and developmental genetics. The editors will favour work describing fundamental processes in the cellular and molecular mechanisms of animal development, and, in particular, the identification of unifying principles in biology. Nonetheless, new technologies, review articles, debates and letters will become a prominent feature.