印度艺术风格的神经艺术风格迁移模型与架构研究。

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2023-02-01 Epub Date: 2023-09-05 DOI:10.1080/0954898X.2023.2252073
J Mercy Faustina, V Akash, Anmol Gupta, V Divya, Takasi Manoj, N Sadagopan, B Sivaselvan
{"title":"印度艺术风格的神经艺术风格迁移模型与架构研究。","authors":"J Mercy Faustina, V Akash, Anmol Gupta, V Divya, Takasi Manoj, N Sadagopan, B Sivaselvan","doi":"10.1080/0954898X.2023.2252073","DOIUrl":null,"url":null,"abstract":"<p><p>Neural Style Transfer (NST) has been a widely researched topic as of late enabling new forms of image manipulation. Here we perform an extensive study on NST algorithms and extend the existing methods with custom modifications for application to Indian art styles. In this paper, we aim to provide a comprehensive analysis of various methods ranging from the seminal work of Gatys et al which demonstrated the power of Convolutional Neural Networks (CNNs) in creating artistic imagery by separating and recombining image content and style, to the state of the art image-to-image translation models which use Generative Adversarial Networks (GANs) to learn the mapping between two domain of images. We observe and infer based on the results produced by the models on which one could be a more suitable approach for Indian art styles, especially Tanjore paintings which are unique compared to the Western art styles. We then propose the method which is more suitable for the domain of Indian Art style along with custom architecture which includes an enhancement and evaluation module. We then present evaluation methods, both qualitative and quantitative which includes our proposed metric, to evaluate the results produced by the model.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of neural artistic style transfer models and architectures for Indian art styles.\",\"authors\":\"J Mercy Faustina, V Akash, Anmol Gupta, V Divya, Takasi Manoj, N Sadagopan, B Sivaselvan\",\"doi\":\"10.1080/0954898X.2023.2252073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural Style Transfer (NST) has been a widely researched topic as of late enabling new forms of image manipulation. Here we perform an extensive study on NST algorithms and extend the existing methods with custom modifications for application to Indian art styles. In this paper, we aim to provide a comprehensive analysis of various methods ranging from the seminal work of Gatys et al which demonstrated the power of Convolutional Neural Networks (CNNs) in creating artistic imagery by separating and recombining image content and style, to the state of the art image-to-image translation models which use Generative Adversarial Networks (GANs) to learn the mapping between two domain of images. We observe and infer based on the results produced by the models on which one could be a more suitable approach for Indian art styles, especially Tanjore paintings which are unique compared to the Western art styles. We then propose the method which is more suitable for the domain of Indian Art style along with custom architecture which includes an enhancement and evaluation module. We then present evaluation methods, both qualitative and quantitative which includes our proposed metric, to evaluate the results produced by the model.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2023.2252073\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2252073","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

神经风格转移(NST)是最近一个被广泛研究的主题,因为它能够实现新形式的图像处理。在这里,我们对NST算法进行了广泛的研究,并通过自定义修改将现有方法扩展到印度艺术风格。在本文中,我们旨在对各种方法进行全面分析,包括Gatys等人的开创性工作,该工作证明了卷积神经网络(CNNs)通过分离和重组图像内容和风格来创造艺术图像的能力,涉及到使用生成对抗性网络(GANs)来学习图像的两个领域之间的映射的现有技术的图像到图像翻译模型。我们根据模型产生的结果进行观察和推断,在这些模型的基础上,可以找到更适合印度艺术风格的方法,尤其是与西方艺术风格相比独特的Tanjore绘画。然后,我们提出了一种更适合印度艺术风格和定制建筑领域的方法,其中包括一个增强和评估模块。然后,我们提出了定性和定量的评估方法,其中包括我们提出的指标,以评估模型产生的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study of neural artistic style transfer models and architectures for Indian art styles.

Neural Style Transfer (NST) has been a widely researched topic as of late enabling new forms of image manipulation. Here we perform an extensive study on NST algorithms and extend the existing methods with custom modifications for application to Indian art styles. In this paper, we aim to provide a comprehensive analysis of various methods ranging from the seminal work of Gatys et al which demonstrated the power of Convolutional Neural Networks (CNNs) in creating artistic imagery by separating and recombining image content and style, to the state of the art image-to-image translation models which use Generative Adversarial Networks (GANs) to learn the mapping between two domain of images. We observe and infer based on the results produced by the models on which one could be a more suitable approach for Indian art styles, especially Tanjore paintings which are unique compared to the Western art styles. We then propose the method which is more suitable for the domain of Indian Art style along with custom architecture which includes an enhancement and evaluation module. We then present evaluation methods, both qualitative and quantitative which includes our proposed metric, to evaluate the results produced by the model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Tree hierarchical deep convolutional neural network optimized with sheep flock optimization algorithm for sentiment classification of Twitter data. Deep self-organizing map neural networks improve the segmentation for inadequate plantar pressure imaging data set. Sentiment analysis using graph-based Quickprop method for product quality enhancement. Internet of Things and Cloud Computing-based Disease Diagnosis using Optimized Improved Generative Adversarial Network in Smart Healthcare System. Neuro connect: Integrating data-driven and BiGRU classification for enhanced autism prediction from fMRI data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1