基于染色体水平基因组的比较分析揭示了裂肢鱼类高海拔适应的潜在遗传机制。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-11-15 DOI:10.1093/jhered/esad050
Chuang Zhou, Xiaodong Wang, Zhengrui Hu, Qian Chen, Chao Du, Yi Liu, Zhaobin Song
{"title":"基于染色体水平基因组的比较分析揭示了裂肢鱼类高海拔适应的潜在遗传机制。","authors":"Chuang Zhou, Xiaodong Wang, Zhengrui Hu, Qian Chen, Chao Du, Yi Liu, Zhaobin Song","doi":"10.1093/jhered/esad050","DOIUrl":null,"url":null,"abstract":"<p><p>The schizothoracine fishes, widely distributed in the Qinghai-Tibetan Plateau and its adjacent areas, are considered as ideal models for investigation of high-altitude adaptation. Schizophygopsis are one group of the highly specialized schizothoracine fishes, and the genetic basis for their high-altitude adaptation is poorly understood. In this study, we performed comparative genomics analyses to investigate the potential genetic mechanisms for high-altitude adaptation of Schizopygopsis malacanthus and Schizopygopsis pylzovi based on the chromosome-level genomes. Functional enrichment analysis revealed that many expanded gene families in Schizopygopsis were associated with immune response while many contracted gene families were functionally associated with olfaction. Among the 123 positively selected genes (PSGs), angpt2a was detected in HIF-1 signaling pathway and possibly related to the hypoxia adaptation of Schizopygopsis. Furthermore, two PSGs cox15 and ndufb10 were distributed in thermogenesis, and there was a Schizopygopsis-specific missense mutation in cox15 (Gln115Glu), which possibly contributed to the cold temperature adaptation of the Schizopygopsis. Kyoto Encyclopedia of Genes and Genomes enrichment of the PSGs revealed three significant pathways including metabolic pathways, cell cycle, and homologous recombination and Gene Ontology enrichment analysis of the PSGs revealed several categories associated with DNA repair, cellular response to DNA damage stimulus, and metabolic process. Chromosome-scale characterization of olfactory receptor (OR) repertoires indicated that Schizopygopsis had the least number of OR genes, and the OR gene contraction was possibly caused by the limited food variety and the environmental factors such as lower air pressure, lower humidity, and lower temperature. Our study will help expand our understanding of the potential adaptive mechanism of Schizopygopsis to cope with the high-altitude conditions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analyses reveal potential genetic mechanisms for high-altitude adaptation of Schizopygopsis fishes based on chromosome-level genomes.\",\"authors\":\"Chuang Zhou, Xiaodong Wang, Zhengrui Hu, Qian Chen, Chao Du, Yi Liu, Zhaobin Song\",\"doi\":\"10.1093/jhered/esad050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The schizothoracine fishes, widely distributed in the Qinghai-Tibetan Plateau and its adjacent areas, are considered as ideal models for investigation of high-altitude adaptation. Schizophygopsis are one group of the highly specialized schizothoracine fishes, and the genetic basis for their high-altitude adaptation is poorly understood. In this study, we performed comparative genomics analyses to investigate the potential genetic mechanisms for high-altitude adaptation of Schizopygopsis malacanthus and Schizopygopsis pylzovi based on the chromosome-level genomes. Functional enrichment analysis revealed that many expanded gene families in Schizopygopsis were associated with immune response while many contracted gene families were functionally associated with olfaction. Among the 123 positively selected genes (PSGs), angpt2a was detected in HIF-1 signaling pathway and possibly related to the hypoxia adaptation of Schizopygopsis. Furthermore, two PSGs cox15 and ndufb10 were distributed in thermogenesis, and there was a Schizopygopsis-specific missense mutation in cox15 (Gln115Glu), which possibly contributed to the cold temperature adaptation of the Schizopygopsis. Kyoto Encyclopedia of Genes and Genomes enrichment of the PSGs revealed three significant pathways including metabolic pathways, cell cycle, and homologous recombination and Gene Ontology enrichment analysis of the PSGs revealed several categories associated with DNA repair, cellular response to DNA damage stimulus, and metabolic process. Chromosome-scale characterization of olfactory receptor (OR) repertoires indicated that Schizopygopsis had the least number of OR genes, and the OR gene contraction was possibly caused by the limited food variety and the environmental factors such as lower air pressure, lower humidity, and lower temperature. Our study will help expand our understanding of the potential adaptive mechanism of Schizopygopsis to cope with the high-altitude conditions.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jhered/esad050\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jhered/esad050","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

裂胸科鱼类广泛分布于青藏高原及其邻近地区,是研究高原适应性的理想模式。裂藻是高度特化的裂胸纲鱼类之一,其适应高海拔的遗传基础尚不清楚。在本研究中,我们通过比较基因组学分析,探讨了malacanthus Schizopygopsis和pylzovi Schizopygopsis在染色体水平上适应高海拔的潜在遗传机制。功能富集分析显示,裂肢病中许多扩展的基因家族与免疫应答相关,而许多收缩的基因家族在功能上与嗅觉相关。在123个阳性选择基因(PSGs)中,angpt2a在HIF-1信号通路中被检测到,可能与Schizopygopsis的缺氧适应有关。此外,两个psg cox15和ndufb10分布在产热过程中,cox15存在一个schizopyopsis特异性错义突变(Gln115Glu),这可能有助于schizopyopsis的低温适应。京都基因和基因组百科全书对psg的富集揭示了代谢途径、细胞周期和同源重组三种重要途径,对psg的基因本体富集分析揭示了与DNA修复、细胞对DNA损伤刺激的反应和代谢过程相关的几个类别。嗅觉受体(OR)基因库的染色体尺度表征表明,Schizopygopsis的OR基因数量最少,OR基因收缩可能是由食物种类有限和低气压、低湿度、低温度等环境因素引起的。我们的研究将有助于扩大我们对Schizopygopsis应对高海拔条件的潜在适应机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analyses reveal potential genetic mechanisms for high-altitude adaptation of Schizopygopsis fishes based on chromosome-level genomes.

The schizothoracine fishes, widely distributed in the Qinghai-Tibetan Plateau and its adjacent areas, are considered as ideal models for investigation of high-altitude adaptation. Schizophygopsis are one group of the highly specialized schizothoracine fishes, and the genetic basis for their high-altitude adaptation is poorly understood. In this study, we performed comparative genomics analyses to investigate the potential genetic mechanisms for high-altitude adaptation of Schizopygopsis malacanthus and Schizopygopsis pylzovi based on the chromosome-level genomes. Functional enrichment analysis revealed that many expanded gene families in Schizopygopsis were associated with immune response while many contracted gene families were functionally associated with olfaction. Among the 123 positively selected genes (PSGs), angpt2a was detected in HIF-1 signaling pathway and possibly related to the hypoxia adaptation of Schizopygopsis. Furthermore, two PSGs cox15 and ndufb10 were distributed in thermogenesis, and there was a Schizopygopsis-specific missense mutation in cox15 (Gln115Glu), which possibly contributed to the cold temperature adaptation of the Schizopygopsis. Kyoto Encyclopedia of Genes and Genomes enrichment of the PSGs revealed three significant pathways including metabolic pathways, cell cycle, and homologous recombination and Gene Ontology enrichment analysis of the PSGs revealed several categories associated with DNA repair, cellular response to DNA damage stimulus, and metabolic process. Chromosome-scale characterization of olfactory receptor (OR) repertoires indicated that Schizopygopsis had the least number of OR genes, and the OR gene contraction was possibly caused by the limited food variety and the environmental factors such as lower air pressure, lower humidity, and lower temperature. Our study will help expand our understanding of the potential adaptive mechanism of Schizopygopsis to cope with the high-altitude conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1