PhenoScore通过使用机器学习框架将面部分析与其他临床特征相结合,量化罕见遗传疾病的表型变异。

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Nature genetics Pub Date : 2023-08-07 DOI:10.1038/s41588-023-01469-w
Alexander J. M. Dingemans, Max Hinne, Kim M. G. Truijen, Lia Goltstein, Jeroen van Reeuwijk, Nicole de Leeuw, Janneke Schuurs-Hoeijmakers, Rolph Pfundt, Illja J. Diets, Joery den Hoed, Elke de Boer, Jet Coenen-van der Spek, Sandra Jansen, Bregje W. van Bon, Noraly Jonis, Charlotte W. Ockeloen, Anneke T. Vulto-van Silfhout, Tjitske Kleefstra, David A. Koolen, Philippe M. Campeau, Elizabeth E. Palmer, Hilde Van Esch, Gholson J. Lyon, Fowzan S. Alkuraya, Anita Rauch, Ronit Marom, Diana Baralle, Pleuntje J. van der Sluijs, Gijs W. E. Santen, R. Frank Kooy, Marcel A. J. van Gerven, Lisenka E. L. M. Vissers, Bert B. A. de Vries
{"title":"PhenoScore通过使用机器学习框架将面部分析与其他临床特征相结合,量化罕见遗传疾病的表型变异。","authors":"Alexander J. M. Dingemans, Max Hinne, Kim M. G. Truijen, Lia Goltstein, Jeroen van Reeuwijk, Nicole de Leeuw, Janneke Schuurs-Hoeijmakers, Rolph Pfundt, Illja J. Diets, Joery den Hoed, Elke de Boer, Jet Coenen-van der Spek, Sandra Jansen, Bregje W. van Bon, Noraly Jonis, Charlotte W. Ockeloen, Anneke T. Vulto-van Silfhout, Tjitske Kleefstra, David A. Koolen, Philippe M. Campeau, Elizabeth E. Palmer, Hilde Van Esch, Gholson J. Lyon, Fowzan S. Alkuraya, Anita Rauch, Ronit Marom, Diana Baralle, Pleuntje J. van der Sluijs, Gijs W. E. Santen, R. Frank Kooy, Marcel A. J. van Gerven, Lisenka E. L. M. Vissers, Bert B. A. de Vries","doi":"10.1038/s41588-023-01469-w","DOIUrl":null,"url":null,"abstract":"Several molecular and phenotypic algorithms exist that establish genotype–phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore’s ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype–phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally. PhenoScore is an open-source machine-learning tool that combines facial image recognition with Human Phenotype Ontology for genetic syndrome identification without genomic data, with applications to subgroup analysis and variants of unknown significance classification.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"55 9","pages":"1598-1607"},"PeriodicalIF":31.7000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework\",\"authors\":\"Alexander J. M. Dingemans, Max Hinne, Kim M. G. Truijen, Lia Goltstein, Jeroen van Reeuwijk, Nicole de Leeuw, Janneke Schuurs-Hoeijmakers, Rolph Pfundt, Illja J. Diets, Joery den Hoed, Elke de Boer, Jet Coenen-van der Spek, Sandra Jansen, Bregje W. van Bon, Noraly Jonis, Charlotte W. Ockeloen, Anneke T. Vulto-van Silfhout, Tjitske Kleefstra, David A. Koolen, Philippe M. Campeau, Elizabeth E. Palmer, Hilde Van Esch, Gholson J. Lyon, Fowzan S. Alkuraya, Anita Rauch, Ronit Marom, Diana Baralle, Pleuntje J. van der Sluijs, Gijs W. E. Santen, R. Frank Kooy, Marcel A. J. van Gerven, Lisenka E. L. M. Vissers, Bert B. A. de Vries\",\"doi\":\"10.1038/s41588-023-01469-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several molecular and phenotypic algorithms exist that establish genotype–phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore’s ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype–phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally. PhenoScore is an open-source machine-learning tool that combines facial image recognition with Human Phenotype Ontology for genetic syndrome identification without genomic data, with applications to subgroup analysis and variants of unknown significance classification.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"55 9\",\"pages\":\"1598-1607\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-023-01469-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-023-01469-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

存在几种建立基因型-表型相关性的分子和表型算法,包括面部识别工具。然而,不存在直接调查个人面部数据和其他表型数据的统一框架。我们开发了PhenoScore:一个开源的、基于人工智能的表型学框架,将面部识别技术与人类表型本体数据分析相结合,以量化表型相似性。在这里,我们通过针对在患有其他神经发育障碍的个体中观察到的临床特征,为40种研究综合征中的37种建立可识别的表型,展示了PhenoScore识别不同表型实体的能力,并表明这是对现有方法的改进。PhenoScore为具有未知意义的变异的个体提供预测,并通过测试可能的表型(亚)组的假设来进行复杂的基因型表型研究。PhenoScore证实了先前已知的由SATB1、SETBP1和DEAF1的同一基因变体引起的表型亚群,并为两种不同的ADNP相关表型提供了客观的临床证据,这两种表型已经在功能上建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework
Several molecular and phenotypic algorithms exist that establish genotype–phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore’s ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype–phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally. PhenoScore is an open-source machine-learning tool that combines facial image recognition with Human Phenotype Ontology for genetic syndrome identification without genomic data, with applications to subgroup analysis and variants of unknown significance classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
期刊最新文献
Genome-wide association analysis provides insights into the molecular etiology of dilated cardiomyopathy Genome-wide association study reveals mechanisms underlying dilated cardiomyopathy and myocardial resilience Author Correction: Brca1 haploinsufficiency promotes early tumor onset and epigenetic alterations in a mouse model of hereditary breast cancer Epigenetic scars of Brca1 loss point toward breast cancer cell of origin A temporal cortex cell atlas highlights gene expression dynamics during human brain maturation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1