{"title":"WeiTsing:Ca2+渗透通道在植物免疫中的新面孔。","authors":"Feng-Zhu Wang, Jian-Feng Li","doi":"10.1007/s44154-023-00110-4","DOIUrl":null,"url":null,"abstract":"<p><p>Plants employ pattern- and effector-triggered immunity (PTI and ETI) to synergistically defend invading pathogens and insect herbivores. Both PTI and ETI can induce cytosolic Ca<sup>2+</sup> spikes, despite in different spatiotemporal patterns, to activate downstream Ca<sup>2+</sup>-dependent immune signaling cascades. While multiple families of Ca<sup>2+</sup>-permeable channels at the plasma membrane have been uncovered, the counterparts responsible for Ca<sup>2+</sup> release from intracellular stores remain poorly understood. In a groundbreaking paper published recently by Cell, the authors reported that WeiTsing, an Arabidopsis endoplasmic reticulum (ER)-resident protein that was specifically expressed in the pericycle upon Plasmodiophora brassicae (Pb) infection, could form resistosome-like Ca<sup>2+</sup>-conducting channel and protect the stele of Brassica crops from Pb colonization. As the channel activity of WeiTsing was indispensable for its immune function, the findings highlight a previously underappreciated role of Ca<sup>2+</sup> release from intracellular repertoire in promoting plant disease resistance.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"25"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441888/pdf/","citationCount":"0","resultStr":"{\"title\":\"WeiTsing: a new face of Ca<sup>2+</sup>-permeable channels in plant immunity.\",\"authors\":\"Feng-Zhu Wang, Jian-Feng Li\",\"doi\":\"10.1007/s44154-023-00110-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants employ pattern- and effector-triggered immunity (PTI and ETI) to synergistically defend invading pathogens and insect herbivores. Both PTI and ETI can induce cytosolic Ca<sup>2+</sup> spikes, despite in different spatiotemporal patterns, to activate downstream Ca<sup>2+</sup>-dependent immune signaling cascades. While multiple families of Ca<sup>2+</sup>-permeable channels at the plasma membrane have been uncovered, the counterparts responsible for Ca<sup>2+</sup> release from intracellular stores remain poorly understood. In a groundbreaking paper published recently by Cell, the authors reported that WeiTsing, an Arabidopsis endoplasmic reticulum (ER)-resident protein that was specifically expressed in the pericycle upon Plasmodiophora brassicae (Pb) infection, could form resistosome-like Ca<sup>2+</sup>-conducting channel and protect the stele of Brassica crops from Pb colonization. As the channel activity of WeiTsing was indispensable for its immune function, the findings highlight a previously underappreciated role of Ca<sup>2+</sup> release from intracellular repertoire in promoting plant disease resistance.</p>\",\"PeriodicalId\":74874,\"journal\":{\"name\":\"Stress biology\",\"volume\":\"3 1\",\"pages\":\"25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441888/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stress biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44154-023-00110-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-023-00110-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
WeiTsing: a new face of Ca2+-permeable channels in plant immunity.
Plants employ pattern- and effector-triggered immunity (PTI and ETI) to synergistically defend invading pathogens and insect herbivores. Both PTI and ETI can induce cytosolic Ca2+ spikes, despite in different spatiotemporal patterns, to activate downstream Ca2+-dependent immune signaling cascades. While multiple families of Ca2+-permeable channels at the plasma membrane have been uncovered, the counterparts responsible for Ca2+ release from intracellular stores remain poorly understood. In a groundbreaking paper published recently by Cell, the authors reported that WeiTsing, an Arabidopsis endoplasmic reticulum (ER)-resident protein that was specifically expressed in the pericycle upon Plasmodiophora brassicae (Pb) infection, could form resistosome-like Ca2+-conducting channel and protect the stele of Brassica crops from Pb colonization. As the channel activity of WeiTsing was indispensable for its immune function, the findings highlight a previously underappreciated role of Ca2+ release from intracellular repertoire in promoting plant disease resistance.