聚对苯二甲酸水解酶活性的命名和分析方法综述。

IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biodegradation Pub Date : 2023-09-09 DOI:10.1007/s10532-023-10048-z
Ruth Amanna, Sudip K. Rakshit
{"title":"聚对苯二甲酸水解酶活性的命名和分析方法综述。","authors":"Ruth Amanna,&nbsp;Sudip K. Rakshit","doi":"10.1007/s10532-023-10048-z","DOIUrl":null,"url":null,"abstract":"<div><p>Enzymatic degradation of polyethylene terephthalic acid (PET) has been gaining increasing importance. This has resulted in a significant increase in the search for newer enzymes and the development of more efficient enzyme-based systems. Due to the lack of a standard screening process, screening new enzymes has relied on other assays to determine the presence of esterase activity. This, in turn, has led to various nomenclatures and methods used to describe them and measure their activity. Since all PET-hydrolyzing enzymes are α/β hydrolases, they catalyze a serine nucleophilic attack and cleave an ester bond. They are lipases, esterases, cutinases and hydrolases. This has been used interchangeably, leading to difficulties while comparing results and evaluating progress. This review discusses the varied enzyme nomenclature being adapted, the different assays and analysis methods reported, and the strategies used to increase PET-hydrolyzing enzyme efficiency. A section on the various ways to quantify PET hydrolysis is also covered.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 4","pages":"341 - 360"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of nomenclature and methods of analysis of polyethylene terephthalic acid hydrolyzing enzymes activity\",\"authors\":\"Ruth Amanna,&nbsp;Sudip K. Rakshit\",\"doi\":\"10.1007/s10532-023-10048-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enzymatic degradation of polyethylene terephthalic acid (PET) has been gaining increasing importance. This has resulted in a significant increase in the search for newer enzymes and the development of more efficient enzyme-based systems. Due to the lack of a standard screening process, screening new enzymes has relied on other assays to determine the presence of esterase activity. This, in turn, has led to various nomenclatures and methods used to describe them and measure their activity. Since all PET-hydrolyzing enzymes are α/β hydrolases, they catalyze a serine nucleophilic attack and cleave an ester bond. They are lipases, esterases, cutinases and hydrolases. This has been used interchangeably, leading to difficulties while comparing results and evaluating progress. This review discusses the varied enzyme nomenclature being adapted, the different assays and analysis methods reported, and the strategies used to increase PET-hydrolyzing enzyme efficiency. A section on the various ways to quantify PET hydrolysis is also covered.</p></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"35 4\",\"pages\":\"341 - 360\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-023-10048-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10048-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

聚对苯二甲酸乙二醇酯(PET)的酶降解越来越重要。因此,寻找新酶和开发更有效的酶基系统的工作大幅增加。由于缺乏标准筛选程序,筛选新酶一直依赖于其他检测方法来确定酯酶活性的存在。这反过来又导致了用于描述这些酶和测量其活性的各种命名和方法。由于所有 PET水解酶都是α/β水解酶,它们催化丝氨酸亲核攻击并裂解酯键。它们是脂肪酶、酯酶、角叉菜酶和水解酶。它们被交替使用,导致在比较结果和评估进展时遇到困难。本综述讨论了所采用的各种酶命名法、所报告的不同检测和分析方法,以及用于提高 PET水解酶效率的策略。此外,还介绍了量化 PET 水解的各种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of nomenclature and methods of analysis of polyethylene terephthalic acid hydrolyzing enzymes activity

Enzymatic degradation of polyethylene terephthalic acid (PET) has been gaining increasing importance. This has resulted in a significant increase in the search for newer enzymes and the development of more efficient enzyme-based systems. Due to the lack of a standard screening process, screening new enzymes has relied on other assays to determine the presence of esterase activity. This, in turn, has led to various nomenclatures and methods used to describe them and measure their activity. Since all PET-hydrolyzing enzymes are α/β hydrolases, they catalyze a serine nucleophilic attack and cleave an ester bond. They are lipases, esterases, cutinases and hydrolases. This has been used interchangeably, leading to difficulties while comparing results and evaluating progress. This review discusses the varied enzyme nomenclature being adapted, the different assays and analysis methods reported, and the strategies used to increase PET-hydrolyzing enzyme efficiency. A section on the various ways to quantify PET hydrolysis is also covered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
期刊最新文献
Evaluation of microbial community dynamics and chlorinated solvent biodegradation in methane-amended microcosms from an acidic aquifer Disentangling the microbial genomic traits associated with aromatic hydrocarbon degradation in a jet fuel-contaminated aquifer Revolutionizing dairy waste: emerging solutions in conjunction with microbial engineering Isolation and purification of esterase enzyme from marine bacteria associated with biodegradation of polyvinyl chloride (PVC) Insights of energy potential in thermophilic sugarcane vinasse and molasses treatment: does two-stage codigestion enhance operational performance?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1