与精神疾病相关的全基因组后关联综合研究分析:转录组和蛋白质组信号的推测。

Complex psychiatry Pub Date : 2023-04-11 eCollection Date: 2023-01-01 DOI:10.1159/000530223
Huseyin Gedik, Roseann E Peterson, Brien P Riley, Vladimir I Vladimirov, Silviu-Alin Bacanu
{"title":"与精神疾病相关的全基因组后关联综合研究分析:转录组和蛋白质组信号的推测。","authors":"Huseyin Gedik, Roseann E Peterson, Brien P Riley, Vladimir I Vladimirov, Silviu-Alin Bacanu","doi":"10.1159/000530223","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The genome-wide association study (GWAS) is a common tool to identify genetic variants associated with complex traits, including psychiatric disorders (PDs). However, post-GWAS analyses are needed to extend the statistical inference to biologically relevant entities, e.g., genes, proteins, and pathways. To achieve this goal, researchers developed methods that incorporate biologically relevant intermediate molecular phenotypes, such as gene expression and protein abundance, which are posited to mediate the variant-trait association. Transcriptome-wide association study (TWAS) and proteome-wide association study (PWAS) are commonly used methods to test the association between these molecular mediators and the trait.</p><p><strong>Summary: </strong>In this review, we discuss the most recent developments in TWAS and PWAS. These methods integrate existing \"omic\" information with the GWAS summary statistics for trait(s) of interest. Specifically, they impute transcript/protein data and test the association between imputed gene expression/protein level with phenotype of interest by using (i) GWAS summary statistics and (ii) reference transcriptomic/proteomic/genomic datasets. TWAS and PWAS are suitable as analysis tools for (i) primary association scan and (ii) fine-mapping to identify potentially causal genes for PDs.</p><p><strong>Key messages: </strong>As post-GWAS analyses, TWAS and PWAS have the potential to highlight causal genes for PDs. These prioritized genes could indicate targets for the development of novel drug therapies. For researchers attempting such analyses, we recommend Mendelian randomization tools that use GWAS statistics for both trait and reference datasets, e.g., summary Mendelian randomization (SMR). We base our recommendation on (i) being able to use the same tool for both TWAS and PWAS, (ii) not requiring the pre-computed weights (and thus easier to update for larger reference datasets), and (iii) most larger transcriptome reference datasets are publicly available and easy to transform into a compatible format for SMR analysis.</p>","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"9 1-4","pages":"130-144"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425719/pdf/cxp-2023-0009-01-4-530223.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrative Post-Genome-Wide Association Study Analyses Relevant to Psychiatric Disorders: Imputing Transcriptome and Proteome Signals.\",\"authors\":\"Huseyin Gedik, Roseann E Peterson, Brien P Riley, Vladimir I Vladimirov, Silviu-Alin Bacanu\",\"doi\":\"10.1159/000530223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The genome-wide association study (GWAS) is a common tool to identify genetic variants associated with complex traits, including psychiatric disorders (PDs). However, post-GWAS analyses are needed to extend the statistical inference to biologically relevant entities, e.g., genes, proteins, and pathways. To achieve this goal, researchers developed methods that incorporate biologically relevant intermediate molecular phenotypes, such as gene expression and protein abundance, which are posited to mediate the variant-trait association. Transcriptome-wide association study (TWAS) and proteome-wide association study (PWAS) are commonly used methods to test the association between these molecular mediators and the trait.</p><p><strong>Summary: </strong>In this review, we discuss the most recent developments in TWAS and PWAS. These methods integrate existing \\\"omic\\\" information with the GWAS summary statistics for trait(s) of interest. Specifically, they impute transcript/protein data and test the association between imputed gene expression/protein level with phenotype of interest by using (i) GWAS summary statistics and (ii) reference transcriptomic/proteomic/genomic datasets. TWAS and PWAS are suitable as analysis tools for (i) primary association scan and (ii) fine-mapping to identify potentially causal genes for PDs.</p><p><strong>Key messages: </strong>As post-GWAS analyses, TWAS and PWAS have the potential to highlight causal genes for PDs. These prioritized genes could indicate targets for the development of novel drug therapies. For researchers attempting such analyses, we recommend Mendelian randomization tools that use GWAS statistics for both trait and reference datasets, e.g., summary Mendelian randomization (SMR). We base our recommendation on (i) being able to use the same tool for both TWAS and PWAS, (ii) not requiring the pre-computed weights (and thus easier to update for larger reference datasets), and (iii) most larger transcriptome reference datasets are publicly available and easy to transform into a compatible format for SMR analysis.</p>\",\"PeriodicalId\":72654,\"journal\":{\"name\":\"Complex psychiatry\",\"volume\":\"9 1-4\",\"pages\":\"130-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425719/pdf/cxp-2023-0009-01-4-530223.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000530223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000530223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:全基因组关联研究(GWAS)是识别与复杂特征相关的遗传变异的常用工具,包括精神疾病(PD)。然而,需要进行GWAS后分析,以将统计推断扩展到生物学相关实体,例如基因、蛋白质和途径。为了实现这一目标,研究人员开发了结合生物学相关中间分子表型的方法,如基因表达和蛋白质丰度,这些表型被认为是介导变异性状关联的。转录组全关联研究(TWAS)和蛋白质组全关联性研究(PWAS)是测试这些分子介质与性状之间关联的常用方法。摘要:在这篇综述中,我们讨论了TWAS和PWAS的最新发展。这些方法将现有的“组学”信息与感兴趣的性状的GWAS汇总统计数据相结合。具体而言,他们估算转录物/蛋白质数据,并通过使用(i)GWAS汇总统计数据和(ii)参考转录组/蛋白质组/基因组数据集来测试估算的基因表达/蛋白质水平与感兴趣表型之间的关联。TWAS和PWAS适合作为分析工具,用于(i)初步关联扫描和(ii)精细定位,以确定PD的潜在致病基因。关键信息:作为GWAS后的分析,TWAS和PWAS有可能突出PD的致病基因。这些优先考虑的基因可以指示开发新药物疗法的靶点。对于尝试进行此类分析的研究人员,我们建议使用孟德尔随机化工具,该工具对性状和参考数据集都使用GWAS统计,例如孟德尔随机化汇总(SMR)。我们的建议基于(i)能够对TWAS和PWAS使用相同的工具,(ii)不需要预先计算的权重(因此更容易更新较大的参考数据集),以及(iii)大多数较大的转录组参考数据集都是公开可用的,并且易于转换为SMR分析的兼容格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrative Post-Genome-Wide Association Study Analyses Relevant to Psychiatric Disorders: Imputing Transcriptome and Proteome Signals.

Background: The genome-wide association study (GWAS) is a common tool to identify genetic variants associated with complex traits, including psychiatric disorders (PDs). However, post-GWAS analyses are needed to extend the statistical inference to biologically relevant entities, e.g., genes, proteins, and pathways. To achieve this goal, researchers developed methods that incorporate biologically relevant intermediate molecular phenotypes, such as gene expression and protein abundance, which are posited to mediate the variant-trait association. Transcriptome-wide association study (TWAS) and proteome-wide association study (PWAS) are commonly used methods to test the association between these molecular mediators and the trait.

Summary: In this review, we discuss the most recent developments in TWAS and PWAS. These methods integrate existing "omic" information with the GWAS summary statistics for trait(s) of interest. Specifically, they impute transcript/protein data and test the association between imputed gene expression/protein level with phenotype of interest by using (i) GWAS summary statistics and (ii) reference transcriptomic/proteomic/genomic datasets. TWAS and PWAS are suitable as analysis tools for (i) primary association scan and (ii) fine-mapping to identify potentially causal genes for PDs.

Key messages: As post-GWAS analyses, TWAS and PWAS have the potential to highlight causal genes for PDs. These prioritized genes could indicate targets for the development of novel drug therapies. For researchers attempting such analyses, we recommend Mendelian randomization tools that use GWAS statistics for both trait and reference datasets, e.g., summary Mendelian randomization (SMR). We base our recommendation on (i) being able to use the same tool for both TWAS and PWAS, (ii) not requiring the pre-computed weights (and thus easier to update for larger reference datasets), and (iii) most larger transcriptome reference datasets are publicly available and easy to transform into a compatible format for SMR analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Epigenetic Alterations in Post-Traumatic Stress Disorder: Comprehensive Review of Molecular Markers. Olfactory Epithelium Infection by SARS-CoV-2: Possible Neuroinflammatory Consequences of COVID-19. Oral Contraceptives and the Risk of Psychiatric Side Effects: A Review Internet-Based Trauma Recovery Intervention for Nurses: A Randomized Controlled Trial Erratum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1