用于癌症风险分类的混合生存树。

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Lifetime Data Analysis Pub Date : 2022-07-01 DOI:10.1007/s10985-022-09552-w
Beilin Jia, Donglin Zeng, Jason J Z Liao, Guanghan F Liu, Xianming Tan, Guoqing Diao, Joseph G Ibrahim
{"title":"用于癌症风险分类的混合生存树。","authors":"Beilin Jia,&nbsp;Donglin Zeng,&nbsp;Jason J Z Liao,&nbsp;Guanghan F Liu,&nbsp;Xianming Tan,&nbsp;Guoqing Diao,&nbsp;Joseph G Ibrahim","doi":"10.1007/s10985-022-09552-w","DOIUrl":null,"url":null,"abstract":"<p><p>In oncology studies, it is important to understand and characterize disease heterogeneity among patients so that patients can be classified into different risk groups and one can identify high-risk patients at the right time. This information can then be used to identify a more homogeneous patient population for developing precision medicine. In this paper, we propose a mixture survival tree approach for direct risk classification. We assume that the patients can be classified into a pre-specified number of risk groups, where each group has distinct survival profile. Our proposed tree-based methods are devised to estimate latent group membership using an EM algorithm. The observed data log-likelihood function is used as the splitting criterion in recursive partitioning. The finite sample performance is evaluated by extensive simulation studies and the proposed method is illustrated by a case study in breast cancer.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 3","pages":"356-379"},"PeriodicalIF":1.2000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402927/pdf/nihms-1918361.pdf","citationCount":"0","resultStr":"{\"title\":\"Mixture survival trees for cancer risk classification.\",\"authors\":\"Beilin Jia,&nbsp;Donglin Zeng,&nbsp;Jason J Z Liao,&nbsp;Guanghan F Liu,&nbsp;Xianming Tan,&nbsp;Guoqing Diao,&nbsp;Joseph G Ibrahim\",\"doi\":\"10.1007/s10985-022-09552-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In oncology studies, it is important to understand and characterize disease heterogeneity among patients so that patients can be classified into different risk groups and one can identify high-risk patients at the right time. This information can then be used to identify a more homogeneous patient population for developing precision medicine. In this paper, we propose a mixture survival tree approach for direct risk classification. We assume that the patients can be classified into a pre-specified number of risk groups, where each group has distinct survival profile. Our proposed tree-based methods are devised to estimate latent group membership using an EM algorithm. The observed data log-likelihood function is used as the splitting criterion in recursive partitioning. The finite sample performance is evaluated by extensive simulation studies and the proposed method is illustrated by a case study in breast cancer.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":\"28 3\",\"pages\":\"356-379\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402927/pdf/nihms-1918361.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-022-09552-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09552-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在肿瘤学研究中,了解和表征患者之间的疾病异质性是非常重要的,这样可以将患者划分为不同的风险组,并在适当的时候识别出高危患者。然后,这些信息可以用于确定更均匀的患者群体,以开发精准医疗。本文提出了一种用于直接风险分类的混合生存树方法。我们假设患者可以被分为预先指定的风险组,其中每组有不同的生存概况。我们提出的基于树的方法是设计来估计潜在的群体成员使用EM算法。将观测数据的对数似然函数作为递归划分的分割准则。有限样本的性能通过广泛的模拟研究进行了评估,并提出了一种方法,说明了一个案例研究在乳腺癌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mixture survival trees for cancer risk classification.

In oncology studies, it is important to understand and characterize disease heterogeneity among patients so that patients can be classified into different risk groups and one can identify high-risk patients at the right time. This information can then be used to identify a more homogeneous patient population for developing precision medicine. In this paper, we propose a mixture survival tree approach for direct risk classification. We assume that the patients can be classified into a pre-specified number of risk groups, where each group has distinct survival profile. Our proposed tree-based methods are devised to estimate latent group membership using an EM algorithm. The observed data log-likelihood function is used as the splitting criterion in recursive partitioning. The finite sample performance is evaluated by extensive simulation studies and the proposed method is illustrated by a case study in breast cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
期刊最新文献
Conditional modeling of recurrent event data with terminal event. Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference. Optimal survival analyses with prevalent and incident patients. Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data. Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1