在深度强化学习中学习意图感知策略

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computation Pub Date : 2023-09-08 DOI:10.1162/neco_a_01607
T. Zhao;S. Wu;G. Li;Y. Chen;G. Niu;Masashi Sugiyama
{"title":"在深度强化学习中学习意图感知策略","authors":"T. Zhao;S. Wu;G. Li;Y. Chen;G. Niu;Masashi Sugiyama","doi":"10.1162/neco_a_01607","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning (DRL) provides an agent with an optimal policy so as to maximize the cumulative rewards. The policy defined in DRL mainly depends on the state, historical memory, and policy model parameters. However, we humans usually take actions according to our own intentions, such as moving fast or slow, besides the elements included in the traditional policy models. In order to make the action-choosing mechanism more similar to humans and make the agent to select actions that incorporate intentions, we propose an intention-aware policy learning method in this letter To formalize this process, we first define an intention-aware policy by incorporating the intention information into the policy model, which is learned by maximizing the cumulative rewards with the mutual information (MI) between the intention and the action. Then we derive an approximation of the MI objective that can be optimized efficiently. Finally, we demonstrate the effectiveness of the intention-aware policy in the classical MuJoCo control task and the multigoal continuous chain walking task.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Intention-Aware Policies in Deep Reinforcement Learning\",\"authors\":\"T. Zhao;S. Wu;G. Li;Y. Chen;G. Niu;Masashi Sugiyama\",\"doi\":\"10.1162/neco_a_01607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep reinforcement learning (DRL) provides an agent with an optimal policy so as to maximize the cumulative rewards. The policy defined in DRL mainly depends on the state, historical memory, and policy model parameters. However, we humans usually take actions according to our own intentions, such as moving fast or slow, besides the elements included in the traditional policy models. In order to make the action-choosing mechanism more similar to humans and make the agent to select actions that incorporate intentions, we propose an intention-aware policy learning method in this letter To formalize this process, we first define an intention-aware policy by incorporating the intention information into the policy model, which is learned by maximizing the cumulative rewards with the mutual information (MI) between the intention and the action. Then we derive an approximation of the MI objective that can be optimized efficiently. Finally, we demonstrate the effectiveness of the intention-aware policy in the classical MuJoCo control task and the multigoal continuous chain walking task.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10301974/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10301974/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度强化学习(Deep reinforcement learning, DRL)为智能体提供最优策略,使累积奖励最大化。DRL中定义的策略主要取决于状态、历史内存和策略模型参数。然而,除了传统的政策模型中包含的因素外,我们人类通常会根据自己的意图采取行动,比如快或慢。为了使行为选择机制更类似于人类,并使智能体选择包含意图的行为,本文提出了一种意图感知策略学习方法。为了形式化这一过程,我们首先通过将意图信息纳入策略模型来定义意图感知策略,该策略通过意图和行为之间的互信息(MI)最大化累积奖励来学习。然后,我们推导出一个可以有效优化的人工智能目标的近似。最后,我们在经典的MuJoCo控制任务和多目标连续链行走任务中验证了意图感知策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Intention-Aware Policies in Deep Reinforcement Learning
Deep reinforcement learning (DRL) provides an agent with an optimal policy so as to maximize the cumulative rewards. The policy defined in DRL mainly depends on the state, historical memory, and policy model parameters. However, we humans usually take actions according to our own intentions, such as moving fast or slow, besides the elements included in the traditional policy models. In order to make the action-choosing mechanism more similar to humans and make the agent to select actions that incorporate intentions, we propose an intention-aware policy learning method in this letter To formalize this process, we first define an intention-aware policy by incorporating the intention information into the policy model, which is learned by maximizing the cumulative rewards with the mutual information (MI) between the intention and the action. Then we derive an approximation of the MI objective that can be optimized efficiently. Finally, we demonstrate the effectiveness of the intention-aware policy in the classical MuJoCo control task and the multigoal continuous chain walking task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
期刊最新文献
Associative Learning and Active Inference. Deep Nonnegative Matrix Factorization with Beta Divergences. KLIF: An Optimized Spiking Neuron Unit for Tuning Surrogate Gradient Function. ℓ 1 -Regularized ICA: A Novel Method for Analysis of Task-Related fMRI Data. Latent Space Bayesian Optimization With Latent Data Augmentation for Enhanced Exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1