{"title":"极简转录机制:比较基因组分析提供了对微孢子虫-真菌相关寄生虫(非)调节转录机制的见解。","authors":"Sittinan Chanarat","doi":"10.1080/21541264.2023.2174765","DOIUrl":null,"url":null,"abstract":"<p><p>Microsporidia are eukaryotic obligate intracellular parasites closely related to fungi. Co-evolving with infected hosts, microsporidia have highly reduced their genomes and lacked several biological components. As it is beneficial for intracellular parasites like microsporidia to reduce their genome size, it is therefore reasonable to assume that genes encoding multifactorial complex machinery of transcription could be a potential target to be excluded from microsporidian genomes during the reductive evolution. In such a case, an evolutionary dilemma occurs because microsporidia cannot remove all transcription-machinery-encoding genes, products of which are essential for initialthe initial steps of gene expression. Here, I propose that while genes encoding core machinery are conserved, several genes known to function in fine-tune regulation of transcription are absent. This genome compaction strategy may come at the cost of loosely regulated or less controllable transcription. Alternatively, analogous to microsporidian polar tube, the parasites may have specialized factors to regulate their RNA synthesis.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"14 1-2","pages":"1-17"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353337/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcription machinery of the minimalist: comparative genomic analysis provides insights into the (de)regulated transcription mechanism of microsporidia - fungal-relative parasites.\",\"authors\":\"Sittinan Chanarat\",\"doi\":\"10.1080/21541264.2023.2174765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microsporidia are eukaryotic obligate intracellular parasites closely related to fungi. Co-evolving with infected hosts, microsporidia have highly reduced their genomes and lacked several biological components. As it is beneficial for intracellular parasites like microsporidia to reduce their genome size, it is therefore reasonable to assume that genes encoding multifactorial complex machinery of transcription could be a potential target to be excluded from microsporidian genomes during the reductive evolution. In such a case, an evolutionary dilemma occurs because microsporidia cannot remove all transcription-machinery-encoding genes, products of which are essential for initialthe initial steps of gene expression. Here, I propose that while genes encoding core machinery are conserved, several genes known to function in fine-tune regulation of transcription are absent. This genome compaction strategy may come at the cost of loosely regulated or less controllable transcription. Alternatively, analogous to microsporidian polar tube, the parasites may have specialized factors to regulate their RNA synthesis.</p>\",\"PeriodicalId\":47009,\"journal\":{\"name\":\"Transcription-Austin\",\"volume\":\"14 1-2\",\"pages\":\"1-17\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353337/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transcription-Austin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21541264.2023.2174765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transcription-Austin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541264.2023.2174765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Transcription machinery of the minimalist: comparative genomic analysis provides insights into the (de)regulated transcription mechanism of microsporidia - fungal-relative parasites.
Microsporidia are eukaryotic obligate intracellular parasites closely related to fungi. Co-evolving with infected hosts, microsporidia have highly reduced their genomes and lacked several biological components. As it is beneficial for intracellular parasites like microsporidia to reduce their genome size, it is therefore reasonable to assume that genes encoding multifactorial complex machinery of transcription could be a potential target to be excluded from microsporidian genomes during the reductive evolution. In such a case, an evolutionary dilemma occurs because microsporidia cannot remove all transcription-machinery-encoding genes, products of which are essential for initialthe initial steps of gene expression. Here, I propose that while genes encoding core machinery are conserved, several genes known to function in fine-tune regulation of transcription are absent. This genome compaction strategy may come at the cost of loosely regulated or less controllable transcription. Alternatively, analogous to microsporidian polar tube, the parasites may have specialized factors to regulate their RNA synthesis.