用于治疗外周动脉疾病的 Proniosomes 纳米粒子。

Q2 Pharmacology, Toxicology and Pharmaceutics Pharmaceutical nanotechnology Pub Date : 2024-01-01 DOI:10.2174/2211738511666230912160729
Preyash A Panchal, Shruti Patel, Asha Patel, Priyanka Ahlawat
{"title":"用于治疗外周动脉疾病的 Proniosomes 纳米粒子。","authors":"Preyash A Panchal, Shruti Patel, Asha Patel, Priyanka Ahlawat","doi":"10.2174/2211738511666230912160729","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The common symptom of systemic atherosclerosis is peripheral arterial disease (PAD), which occurs when the artery lumen in the lower extremities gradually becomes blocked by atherosclerotic plaque. The most frequent symptom of lower extremity PAD, called \"vascular claudication,\" which is pain experienced when walking. Partial or total blockage of the peripheral arteries in the upper and lower limbs is called PAD. The danger of death from concurrent coronary artery and cerebrovascular atherosclerosis outweighs the risk of amputation.</p><p><strong>Objectives: </strong>However, niosomes have issues with fusion, aggregation, leakage, vesicle sedimentation, and difficulty in sterilizing. A more recent strategy known as pro-vesicular carriers was used to solve these issues. The formulations in Proniosomes are dry and anhydrous, protected with a non-ionic surfactant that serves as a carrier when combined with water.</p><p><strong>Materials and methods: </strong>Formulation prepared by organic solvent, surfactant, cholesterol, other components and hydration medium. Coacervation Phase separation Technique used for proniosome Nanoparticle. Box Bhenken Design is used for optimization batches.</p><p><strong>Results: </strong>In this context, we shall discuss the development of Proniosome for the treatment of peripheral arterial diseases. From here, we know that proniosome nanoparticles is pro vesicular system good characteristics and effectiveness for treating peripheral arterial diseases.</p><p><strong>Conclusion: </strong>Proniosomes may be created using various techniques, which may impact how they develop along with the drug's characteristics. They increase the drug's stability while being delivered while being entrapped. They don't need particular conditions for handling, protection, storage, or industrial manufacturing.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"428-437"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proniosomes Nanoparticle for the Treatment of Peripheral Arterial Disease.\",\"authors\":\"Preyash A Panchal, Shruti Patel, Asha Patel, Priyanka Ahlawat\",\"doi\":\"10.2174/2211738511666230912160729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The common symptom of systemic atherosclerosis is peripheral arterial disease (PAD), which occurs when the artery lumen in the lower extremities gradually becomes blocked by atherosclerotic plaque. The most frequent symptom of lower extremity PAD, called \\\"vascular claudication,\\\" which is pain experienced when walking. Partial or total blockage of the peripheral arteries in the upper and lower limbs is called PAD. The danger of death from concurrent coronary artery and cerebrovascular atherosclerosis outweighs the risk of amputation.</p><p><strong>Objectives: </strong>However, niosomes have issues with fusion, aggregation, leakage, vesicle sedimentation, and difficulty in sterilizing. A more recent strategy known as pro-vesicular carriers was used to solve these issues. The formulations in Proniosomes are dry and anhydrous, protected with a non-ionic surfactant that serves as a carrier when combined with water.</p><p><strong>Materials and methods: </strong>Formulation prepared by organic solvent, surfactant, cholesterol, other components and hydration medium. Coacervation Phase separation Technique used for proniosome Nanoparticle. Box Bhenken Design is used for optimization batches.</p><p><strong>Results: </strong>In this context, we shall discuss the development of Proniosome for the treatment of peripheral arterial diseases. From here, we know that proniosome nanoparticles is pro vesicular system good characteristics and effectiveness for treating peripheral arterial diseases.</p><p><strong>Conclusion: </strong>Proniosomes may be created using various techniques, which may impact how they develop along with the drug's characteristics. They increase the drug's stability while being delivered while being entrapped. They don't need particular conditions for handling, protection, storage, or industrial manufacturing.</p>\",\"PeriodicalId\":19774,\"journal\":{\"name\":\"Pharmaceutical nanotechnology\",\"volume\":\" \",\"pages\":\"428-437\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2211738511666230912160729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2211738511666230912160729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

背景:全身性动脉粥样硬化的常见症状是外周动脉疾病(PAD),即下肢动脉管腔逐渐被动脉粥样硬化斑块堵塞。下肢 PAD 最常见的症状是 "血管性跛行",即行走时感到疼痛。上肢和下肢的外周动脉部分或全部堵塞,即为 PAD。并发冠状动脉和脑血管动脉粥样硬化导致死亡的危险大于截肢的风险:然而,niosomes 存在融合、聚集、渗漏、囊泡沉淀和难以灭菌等问题。为了解决这些问题,人们采用了一种称为 "原囊载体 "的最新策略。Proniosomes 中的配方是干燥的无水配方,由非离子表面活性剂保护,与水结合后可作为载体:配方由有机溶剂、表面活性剂、胆固醇、其他成分和水合介质制备而成。代糖纳米粒子采用共凝固相分离技术。在优化批次时采用了箱式贝肯设计(Box Bhenken Design):在这种情况下,我们将讨论开发用于治疗外周动脉疾病的代森酵母。从这里,我们可以了解到,Proniosome 纳米粒子是一种亲囊系统,具有治疗外周动脉疾病的良好特性和有效性:结论:前体可以通过各种技术制造,这可能会影响到前体的发展和药物的特性。它们在夹带药物的同时还能提高药物的稳定性。它们不需要特殊的处理、保护、储存或工业生产条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proniosomes Nanoparticle for the Treatment of Peripheral Arterial Disease.

Background: The common symptom of systemic atherosclerosis is peripheral arterial disease (PAD), which occurs when the artery lumen in the lower extremities gradually becomes blocked by atherosclerotic plaque. The most frequent symptom of lower extremity PAD, called "vascular claudication," which is pain experienced when walking. Partial or total blockage of the peripheral arteries in the upper and lower limbs is called PAD. The danger of death from concurrent coronary artery and cerebrovascular atherosclerosis outweighs the risk of amputation.

Objectives: However, niosomes have issues with fusion, aggregation, leakage, vesicle sedimentation, and difficulty in sterilizing. A more recent strategy known as pro-vesicular carriers was used to solve these issues. The formulations in Proniosomes are dry and anhydrous, protected with a non-ionic surfactant that serves as a carrier when combined with water.

Materials and methods: Formulation prepared by organic solvent, surfactant, cholesterol, other components and hydration medium. Coacervation Phase separation Technique used for proniosome Nanoparticle. Box Bhenken Design is used for optimization batches.

Results: In this context, we shall discuss the development of Proniosome for the treatment of peripheral arterial diseases. From here, we know that proniosome nanoparticles is pro vesicular system good characteristics and effectiveness for treating peripheral arterial diseases.

Conclusion: Proniosomes may be created using various techniques, which may impact how they develop along with the drug's characteristics. They increase the drug's stability while being delivered while being entrapped. They don't need particular conditions for handling, protection, storage, or industrial manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
期刊最新文献
Enhanced Transdermal Delivery of Cilnidpine Via Ultradeformable Vesicle Loaded Patch: Statistical Optimization, Characterization and Pharmacokinetic Assessment. Soluplus-Stabilized Nimodipine-Entrapped Spanlastic Formulations Prepared with Edge Activator (Tween20): Comparative Physicochemical Evaluation. A Review on Silver Nanoparticles: Synthesis Approaches, Properties, Characterization and Applications. A Comprehensive Review on Oleic Acid Vesicles: A Novel Approach to Drug Delivery. Chromatography and Spectroscopic Technique-Based Rapid Characterization of Nano-Carrier Pharmaceuticals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1