MICROSTATELAB:用于静息微状态分析的 EEGLAB 工具箱。

IF 2.3 3区 医学 Q3 CLINICAL NEUROLOGY Brain Topography Pub Date : 2024-07-01 Epub Date: 2023-09-11 DOI:10.1007/s10548-023-01003-5
Sahana Nagabhushan Kalburgi, Tobias Kleinert, Delara Aryan, Kyle Nash, Bastian Schiller, Thomas Koenig
{"title":"MICROSTATELAB:用于静息微状态分析的 EEGLAB 工具箱。","authors":"Sahana Nagabhushan Kalburgi, Tobias Kleinert, Delara Aryan, Kyle Nash, Bastian Schiller, Thomas Koenig","doi":"10.1007/s10548-023-01003-5","DOIUrl":null,"url":null,"abstract":"<p><p>Microstate analysis is a multivariate method that enables investigations of the temporal dynamics of large-scale neural networks in EEG recordings of human brain activity. To meet the enormously increasing interest in this approach, we provide a thoroughly updated version of the first open source EEGLAB toolbox for the standardized identification, visualization, and quantification of microstates in resting-state EEG data. The toolbox allows scientists to (i) identify individual, mean, and grand mean microstate maps using topographical clustering approaches, (ii) check data quality and detect outlier maps, (iii) visualize, sort, and label individual, mean, and grand mean microstate maps according to published maps, (iv) compare topographical similarities of group and grand mean microstate maps and quantify shared variances, (v) obtain the temporal dynamics of the microstate classes in individual EEGs, (vi) export quantifications of these temporal dynamics of the microstates for statistical tests, and finally, (vii) test for topographical differences between groups and conditions using topographic analysis of variance (TANOVA). Here, we introduce the toolbox in a step-by-step tutorial, using a sample dataset of 34 resting-state EEG recordings that are publicly available to follow along with this tutorial. The goals of this manuscript are (a) to provide a standardized, freely available toolbox for resting-state microstate analysis to the scientific community, (b) to allow researchers to use best practices for microstate analysis by following a step-by-step tutorial, and (c) to improve the methodological standards of microstate research by providing previously unavailable functions and recommendations on critical decisions required in microstate analyses.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"621-645"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199309/pdf/","citationCount":"0","resultStr":"{\"title\":\"MICROSTATELAB: The EEGLAB Toolbox for Resting-State Microstate Analysis.\",\"authors\":\"Sahana Nagabhushan Kalburgi, Tobias Kleinert, Delara Aryan, Kyle Nash, Bastian Schiller, Thomas Koenig\",\"doi\":\"10.1007/s10548-023-01003-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microstate analysis is a multivariate method that enables investigations of the temporal dynamics of large-scale neural networks in EEG recordings of human brain activity. To meet the enormously increasing interest in this approach, we provide a thoroughly updated version of the first open source EEGLAB toolbox for the standardized identification, visualization, and quantification of microstates in resting-state EEG data. The toolbox allows scientists to (i) identify individual, mean, and grand mean microstate maps using topographical clustering approaches, (ii) check data quality and detect outlier maps, (iii) visualize, sort, and label individual, mean, and grand mean microstate maps according to published maps, (iv) compare topographical similarities of group and grand mean microstate maps and quantify shared variances, (v) obtain the temporal dynamics of the microstate classes in individual EEGs, (vi) export quantifications of these temporal dynamics of the microstates for statistical tests, and finally, (vii) test for topographical differences between groups and conditions using topographic analysis of variance (TANOVA). Here, we introduce the toolbox in a step-by-step tutorial, using a sample dataset of 34 resting-state EEG recordings that are publicly available to follow along with this tutorial. The goals of this manuscript are (a) to provide a standardized, freely available toolbox for resting-state microstate analysis to the scientific community, (b) to allow researchers to use best practices for microstate analysis by following a step-by-step tutorial, and (c) to improve the methodological standards of microstate research by providing previously unavailable functions and recommendations on critical decisions required in microstate analyses.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\" \",\"pages\":\"621-645\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199309/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-023-01003-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-023-01003-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微状态分析是一种多变量方法,可用于研究人脑活动脑电图记录中大规模神经网络的时间动态。为了满足人们对这种方法日益增长的兴趣,我们提供了第一个开源 EEGLAB 工具箱的全面更新版本,用于静息态脑电数据中微状态的标准化识别、可视化和量化。该工具箱允许科学家 (i) 使用地形聚类方法识别单个、平均和总平均微状态图,(ii) 检查数据质量并检测离群图,(iii) 根据已发布的地图对单个、平均和总平均微状态图进行可视化、排序和标记,(iv) 比较组和总平均微状态图的地形相似性并量化共享方差、(v) 获取单个脑电图中微状态类别的时间动态,(vi) 导出这些微状态时间动态的量化结果用于统计检验,最后,(vii) 使用地形方差分析 (TANOVA) 检验组间和条件间的地形差异。在此,我们将使用公开的 34 个静息态脑电记录样本数据集,通过循序渐进的教程介绍该工具箱。本手稿的目标是:(a)为科学界提供一个标准化的、可免费使用的静息微状态分析工具箱;(b)让研究人员通过逐步学习教程来使用微状态分析的最佳实践;以及(c)通过提供以前无法获得的功能和微状态分析中所需的关键决策建议来提高微状态研究的方法标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MICROSTATELAB: The EEGLAB Toolbox for Resting-State Microstate Analysis.

Microstate analysis is a multivariate method that enables investigations of the temporal dynamics of large-scale neural networks in EEG recordings of human brain activity. To meet the enormously increasing interest in this approach, we provide a thoroughly updated version of the first open source EEGLAB toolbox for the standardized identification, visualization, and quantification of microstates in resting-state EEG data. The toolbox allows scientists to (i) identify individual, mean, and grand mean microstate maps using topographical clustering approaches, (ii) check data quality and detect outlier maps, (iii) visualize, sort, and label individual, mean, and grand mean microstate maps according to published maps, (iv) compare topographical similarities of group and grand mean microstate maps and quantify shared variances, (v) obtain the temporal dynamics of the microstate classes in individual EEGs, (vi) export quantifications of these temporal dynamics of the microstates for statistical tests, and finally, (vii) test for topographical differences between groups and conditions using topographic analysis of variance (TANOVA). Here, we introduce the toolbox in a step-by-step tutorial, using a sample dataset of 34 resting-state EEG recordings that are publicly available to follow along with this tutorial. The goals of this manuscript are (a) to provide a standardized, freely available toolbox for resting-state microstate analysis to the scientific community, (b) to allow researchers to use best practices for microstate analysis by following a step-by-step tutorial, and (c) to improve the methodological standards of microstate research by providing previously unavailable functions and recommendations on critical decisions required in microstate analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
期刊最新文献
Classification of Imagined Speech Signals Using Functional Connectivity Graphs and Machine Learning Models. Eeg Microstates and Balance Parameters for Stroke Discrimination: A Machine Learning Approach. Individuals' Food Preferences can be Influenced by the Music Styles: An ERP Study. Relational Integration Training Modulated the Frontoparietal Network for Fluid Intelligence: An EEG Microstates Study. Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1