Efficient Neural Network Classification of Parkinson's Disease and Schizophrenia Using Resting-State EEG Data.

IF 2.3 3区 医学 Q3 CLINICAL NEUROLOGY Brain Topography Pub Date : 2025-02-17 DOI:10.1007/s10548-025-01102-5
Wenjing Xiong, Lin Ma, Haifeng Li
{"title":"Efficient Neural Network Classification of Parkinson's Disease and Schizophrenia Using Resting-State EEG Data.","authors":"Wenjing Xiong, Lin Ma, Haifeng Li","doi":"10.1007/s10548-025-01102-5","DOIUrl":null,"url":null,"abstract":"<p><p>Timely identification of Parkinson's disease and schizophrenia is crucial for the effective management and enhancement of patients' quality of life. The utilization of electroencephalogram (EEG) monitoring applications has proven instrumental in diagnosing various brain disorders. Prior research has predominantly relied on predefined knowledge of physiological alterations associated with different diseases, employing feature extraction to discern brain conditions. This study introduces SwiftBrainNet, a neural network designed for the classification of Parkinson's disease and schizophrenia using short resting-state EEG segments. SwiftBrainNet aims to minimize reliance on manual feature extraction, relying solely on short EEG segments. Functioning as a single-input, dual-output neural network, SwiftBrainNet incorporates a deep supervisory mechanism facilitated by an auxiliary decoder, which enhances its classification performance by guiding the network in extracting shallow features. Our study conducts a clinical application-oriented experiment that uses continuous multi-segment EEG voting classification. This experiment demonstrates a noticeable improvement in accuracy compared to leave-one-out cross-validation (LOOCV), especially when combined with our data augmentation techniques. These findings underscore the method's practical value in clinical settings, where continuous data frames and enhanced generalization across subjects can significantly improve diagnostic accuracy. Additionally, the high accuracy observed in subject-dependent classification with very short data segments suggests that SwiftBrainNet might capture subject-specific EEG patterns, which could be further explored to enhance disease-related feature learning. This paper provides new evidence supporting the use of short-term EEG data for neurodiagnostic applications, making SwiftBrainNet a promising tool for the early detection of neurological disorders.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 3","pages":"32"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01102-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Timely identification of Parkinson's disease and schizophrenia is crucial for the effective management and enhancement of patients' quality of life. The utilization of electroencephalogram (EEG) monitoring applications has proven instrumental in diagnosing various brain disorders. Prior research has predominantly relied on predefined knowledge of physiological alterations associated with different diseases, employing feature extraction to discern brain conditions. This study introduces SwiftBrainNet, a neural network designed for the classification of Parkinson's disease and schizophrenia using short resting-state EEG segments. SwiftBrainNet aims to minimize reliance on manual feature extraction, relying solely on short EEG segments. Functioning as a single-input, dual-output neural network, SwiftBrainNet incorporates a deep supervisory mechanism facilitated by an auxiliary decoder, which enhances its classification performance by guiding the network in extracting shallow features. Our study conducts a clinical application-oriented experiment that uses continuous multi-segment EEG voting classification. This experiment demonstrates a noticeable improvement in accuracy compared to leave-one-out cross-validation (LOOCV), especially when combined with our data augmentation techniques. These findings underscore the method's practical value in clinical settings, where continuous data frames and enhanced generalization across subjects can significantly improve diagnostic accuracy. Additionally, the high accuracy observed in subject-dependent classification with very short data segments suggests that SwiftBrainNet might capture subject-specific EEG patterns, which could be further explored to enhance disease-related feature learning. This paper provides new evidence supporting the use of short-term EEG data for neurodiagnostic applications, making SwiftBrainNet a promising tool for the early detection of neurological disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
期刊最新文献
Efficient Neural Network Classification of Parkinson's Disease and Schizophrenia Using Resting-State EEG Data. Brain Dynamics of Speech Modes Encoding: Loud and Whispered Speech Versus Standard Speech. Impact of EEG Reference Schemes on Event-Related Potential Outcomes: A Corollary Discharge Study Using a Talk/Listen Paradigm. Neurophysiological Markers of Auditory Verbal Hallucinations in Patients with Schizophrenia: An EEG Microstates Study. How Interoception and the Insula Shape Mental Imagery and Aphantasia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1