Fangrong Zong, Zhaoyi You, Leqing Zhou, Xiaofeng Deng
{"title":"动静脉畸形患者上纵束语言功能的自动纤维定量研究。","authors":"Fangrong Zong, Zhaoyi You, Leqing Zhou, Xiaofeng Deng","doi":"10.3389/fradi.2023.1121879","DOIUrl":null,"url":null,"abstract":"<p><p>The superior longitudinal fasciculus (SLF) is a major fiber tract involved in language processing and has been used to investigate language impairments and plasticity in many neurological diseases. The SLF is divided into four main branches that connect with different cortex regions, with two branches (SLF II, SLF III) being directly related to language. However, most white matter analyses consider the SLF as a single bundle, which may underestimate the relationship between these fiber bundles and language function. In this study, we investigated the differences between branches of the SLF in patients with arteriovenous malformation (AVM), which is a unique model to investigate language reorganization. We analyzed diffusion tensor imaging data of AVM patients and healthy controls to generate whole-brain fiber tractography, and then segmented the SLF into SLF II and III based on their distinctive waypoint regions. The SLF, SLF II, and III were further quantified, and four diffusion parameters of three branches were compared between the AVMs and controls. No significant diffusivity differences of the whole SLF were observed between two groups, however, the right SLF II and III in AVMs showed significant reorganization or impairment patterns as compared to the controls. Results demonstrating the need to subtracting SLF branches when studying structure-function relationship in neurological diseases that have SLF damage.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365120/pdf/","citationCount":"0","resultStr":"{\"title\":\"Language function of the superior longitudinal fasciculus in patients with arteriovenous malformation as evidenced by automatic fiber quantification.\",\"authors\":\"Fangrong Zong, Zhaoyi You, Leqing Zhou, Xiaofeng Deng\",\"doi\":\"10.3389/fradi.2023.1121879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The superior longitudinal fasciculus (SLF) is a major fiber tract involved in language processing and has been used to investigate language impairments and plasticity in many neurological diseases. The SLF is divided into four main branches that connect with different cortex regions, with two branches (SLF II, SLF III) being directly related to language. However, most white matter analyses consider the SLF as a single bundle, which may underestimate the relationship between these fiber bundles and language function. In this study, we investigated the differences between branches of the SLF in patients with arteriovenous malformation (AVM), which is a unique model to investigate language reorganization. We analyzed diffusion tensor imaging data of AVM patients and healthy controls to generate whole-brain fiber tractography, and then segmented the SLF into SLF II and III based on their distinctive waypoint regions. The SLF, SLF II, and III were further quantified, and four diffusion parameters of three branches were compared between the AVMs and controls. No significant diffusivity differences of the whole SLF were observed between two groups, however, the right SLF II and III in AVMs showed significant reorganization or impairment patterns as compared to the controls. Results demonstrating the need to subtracting SLF branches when studying structure-function relationship in neurological diseases that have SLF damage.</p>\",\"PeriodicalId\":73101,\"journal\":{\"name\":\"Frontiers in radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365120/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fradi.2023.1121879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2023.1121879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Language function of the superior longitudinal fasciculus in patients with arteriovenous malformation as evidenced by automatic fiber quantification.
The superior longitudinal fasciculus (SLF) is a major fiber tract involved in language processing and has been used to investigate language impairments and plasticity in many neurological diseases. The SLF is divided into four main branches that connect with different cortex regions, with two branches (SLF II, SLF III) being directly related to language. However, most white matter analyses consider the SLF as a single bundle, which may underestimate the relationship between these fiber bundles and language function. In this study, we investigated the differences between branches of the SLF in patients with arteriovenous malformation (AVM), which is a unique model to investigate language reorganization. We analyzed diffusion tensor imaging data of AVM patients and healthy controls to generate whole-brain fiber tractography, and then segmented the SLF into SLF II and III based on their distinctive waypoint regions. The SLF, SLF II, and III were further quantified, and four diffusion parameters of three branches were compared between the AVMs and controls. No significant diffusivity differences of the whole SLF were observed between two groups, however, the right SLF II and III in AVMs showed significant reorganization or impairment patterns as compared to the controls. Results demonstrating the need to subtracting SLF branches when studying structure-function relationship in neurological diseases that have SLF damage.