敲低HDAC10通过增加SP1乙酰化水平抑制pole2介导的非小细胞肺癌细胞DNA损伤修复

IF 3.3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pulmonary pharmacology & therapeutics Pub Date : 2023-08-30 DOI:10.1016/j.pupt.2023.102250
Hua Guo , Hui Ren , Kun Han , Jianying Li , Yu Dong , Xuan Zhao , Chunqi Li
{"title":"敲低HDAC10通过增加SP1乙酰化水平抑制pole2介导的非小细胞肺癌细胞DNA损伤修复","authors":"Hua Guo ,&nbsp;Hui Ren ,&nbsp;Kun Han ,&nbsp;Jianying Li ,&nbsp;Yu Dong ,&nbsp;Xuan Zhao ,&nbsp;Chunqi Li","doi":"10.1016/j.pupt.2023.102250","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>HDAC10 has been reported to be associated with poor prognosis </span>in patients with non-small cell lung cancer (NSCLC), however, the regulatory role and mechanisms of HDAC10 in NSCLC have not been investigated. In this study, we found that HDAC10 was increased in NSCLC patients and cell lines. And high expression of HDAC10 is linked to poor survival in NSCLC patients. The results showed that knockdown of HDAC10 triggered DNA damage, </span><em>S</em><span><span>-phase arrest, and proliferation inhibition in A549 and H1299<span> cells. In addition, knockdown of HDAC10 promoted cell ferroptosis<span> by enhancing ROS, </span></span></span>MDA and Fe</span><sup>2+</sup><span> levels. Mechanistically, HDAC10 knockdown reduced SP1<span> expression and elevated the acetylation<span> level of SP1, which inhibited the binding of SP1 to the promoter of POLE2, resulting in reduced POLE2 expression. Overexpression of SP1 or POLE2 partially reversed the effects of HDAC10 deletion on NSCLC cell proliferation and ferroptosis. In conclusion, knockdown of HDAC10 inhibited the proliferation of NSCLC cells and promoted their ferroptosis by regulating the SP1/POLE2 axis. HDAC10 might be a promising target for the treatment of NSCLC.</span></span></span></p></div>","PeriodicalId":20799,"journal":{"name":"Pulmonary pharmacology & therapeutics","volume":"83 ","pages":"Article 102250"},"PeriodicalIF":3.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knockdown of HDAC10 inhibits POLE2-mediated DNA damage repair in NSCLC cells by increasing SP1 acetylation levels\",\"authors\":\"Hua Guo ,&nbsp;Hui Ren ,&nbsp;Kun Han ,&nbsp;Jianying Li ,&nbsp;Yu Dong ,&nbsp;Xuan Zhao ,&nbsp;Chunqi Li\",\"doi\":\"10.1016/j.pupt.2023.102250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>HDAC10 has been reported to be associated with poor prognosis </span>in patients with non-small cell lung cancer (NSCLC), however, the regulatory role and mechanisms of HDAC10 in NSCLC have not been investigated. In this study, we found that HDAC10 was increased in NSCLC patients and cell lines. And high expression of HDAC10 is linked to poor survival in NSCLC patients. The results showed that knockdown of HDAC10 triggered DNA damage, </span><em>S</em><span><span>-phase arrest, and proliferation inhibition in A549 and H1299<span> cells. In addition, knockdown of HDAC10 promoted cell ferroptosis<span> by enhancing ROS, </span></span></span>MDA and Fe</span><sup>2+</sup><span> levels. Mechanistically, HDAC10 knockdown reduced SP1<span> expression and elevated the acetylation<span> level of SP1, which inhibited the binding of SP1 to the promoter of POLE2, resulting in reduced POLE2 expression. Overexpression of SP1 or POLE2 partially reversed the effects of HDAC10 deletion on NSCLC cell proliferation and ferroptosis. In conclusion, knockdown of HDAC10 inhibited the proliferation of NSCLC cells and promoted their ferroptosis by regulating the SP1/POLE2 axis. HDAC10 might be a promising target for the treatment of NSCLC.</span></span></span></p></div>\",\"PeriodicalId\":20799,\"journal\":{\"name\":\"Pulmonary pharmacology & therapeutics\",\"volume\":\"83 \",\"pages\":\"Article 102250\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pulmonary pharmacology & therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1094553923000627\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pulmonary pharmacology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094553923000627","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

有报道称HDAC10与非小细胞肺癌(NSCLC)患者预后不良相关,但HDAC10在NSCLC中的调节作用及机制尚未研究。在本研究中,我们发现HDAC10在NSCLC患者和细胞系中升高。而HDAC10的高表达与NSCLC患者的低生存率有关。结果表明,HDAC10的敲低可引起A549和H1299细胞的DNA损伤、s期阻滞和增殖抑制。此外,敲低HDAC10可通过提高ROS、MDA和Fe2+水平促进细胞铁下垂。机制上,HDAC10敲除降低SP1表达,提高SP1的乙酰化水平,从而抑制SP1与POLE2启动子的结合,导致POLE2表达降低。SP1或POLE2的过表达部分逆转了HDAC10缺失对NSCLC细胞增殖和铁凋亡的影响。综上所述,敲低HDAC10可抑制NSCLC细胞的增殖,并通过调节SP1/POLE2轴促进其铁凋亡。HDAC10可能是治疗非小细胞肺癌的一个有希望的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knockdown of HDAC10 inhibits POLE2-mediated DNA damage repair in NSCLC cells by increasing SP1 acetylation levels

HDAC10 has been reported to be associated with poor prognosis in patients with non-small cell lung cancer (NSCLC), however, the regulatory role and mechanisms of HDAC10 in NSCLC have not been investigated. In this study, we found that HDAC10 was increased in NSCLC patients and cell lines. And high expression of HDAC10 is linked to poor survival in NSCLC patients. The results showed that knockdown of HDAC10 triggered DNA damage, S-phase arrest, and proliferation inhibition in A549 and H1299 cells. In addition, knockdown of HDAC10 promoted cell ferroptosis by enhancing ROS, MDA and Fe2+ levels. Mechanistically, HDAC10 knockdown reduced SP1 expression and elevated the acetylation level of SP1, which inhibited the binding of SP1 to the promoter of POLE2, resulting in reduced POLE2 expression. Overexpression of SP1 or POLE2 partially reversed the effects of HDAC10 deletion on NSCLC cell proliferation and ferroptosis. In conclusion, knockdown of HDAC10 inhibited the proliferation of NSCLC cells and promoted their ferroptosis by regulating the SP1/POLE2 axis. HDAC10 might be a promising target for the treatment of NSCLC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
41
审稿时长
42 days
期刊介绍: Pulmonary Pharmacology and Therapeutics (formerly Pulmonary Pharmacology) is concerned with lung pharmacology from molecular to clinical aspects. The subject matter encompasses the major diseases of the lung including asthma, cystic fibrosis, pulmonary circulation, ARDS, carcinoma, bronchitis, emphysema and drug delivery. Laboratory and clinical research on man and animals will be considered including studies related to chemotherapy of cancer, tuberculosis and infection. In addition to original research papers the journal will include review articles and book reviews. Research Areas Include: • All major diseases of the lung • Physiology • Pathology • Drug delivery • Metabolism • Pulmonary Toxicology.
期刊最新文献
Triple inhaled therapy in asthma: beliefs, behaviours and doubts. Prevalence and clinical significance of pre- and post-bronchodilator airflow obstruction in COPD patients Hyperbaric oxygen therapy as an immunomodulatory intervention in COVID-19-induced ARDS: Exploring clinical outcomes and transcriptomic signatures in a randomised controlled trial Interaction between fluticasone furoate and umeclidinium in passively sensitized isolated human airways Chest CT assess the impact of omalizumab treatment on airway remodeling in refractory asthma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1