用于人群计数的混淆区域挖掘。

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE transactions on neural networks and learning systems Pub Date : 2023-09-15 DOI:10.1109/TNNLS.2023.3311020
Jiawen Zhu, Wenda Zhao, Libo Yao, You He, Maodi Hu, Xiaoxing Zhang, Shuo Wang, Tao Li, Huchuan Lu
{"title":"用于人群计数的混淆区域挖掘。","authors":"Jiawen Zhu, Wenda Zhao, Libo Yao, You He, Maodi Hu, Xiaoxing Zhang, Shuo Wang, Tao Li, Huchuan Lu","doi":"10.1109/TNNLS.2023.3311020","DOIUrl":null,"url":null,"abstract":"<p><p>Existing works mainly focus on crowd and ignore the confusion regions which contain extremely similar appearance to crowd in the background, while crowd counting needs to face these two sides at the same time. To address this issue, we propose a novel end-to-end trainable confusion region discriminating and erasing network called CDENet. Specifically, CDENet is composed of two modules of confusion region mining module (CRM) and guided erasing module (GEM). CRM consists of basic density estimation (BDE) network, confusion region aware bridge and confusion region discriminating network. The BDE network first generates a primary density map, and then the confusion region aware bridge excavates the confusion regions by comparing the primary prediction result with the ground-truth density map. Finally, the confusion region discriminating network learns the difference of feature representations in confusion regions and crowds. Furthermore, GEM gives the refined density map by erasing the confusion regions. We evaluate the proposed method on four crowd counting benchmarks, including ShanghaiTech Part_A, ShanghaiTech Part_B, UCF_CC_50, and UCF-QNRF, and our CDENet achieves superior performance compared with the state-of-the-arts.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confusion Region Mining for Crowd Counting.\",\"authors\":\"Jiawen Zhu, Wenda Zhao, Libo Yao, You He, Maodi Hu, Xiaoxing Zhang, Shuo Wang, Tao Li, Huchuan Lu\",\"doi\":\"10.1109/TNNLS.2023.3311020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Existing works mainly focus on crowd and ignore the confusion regions which contain extremely similar appearance to crowd in the background, while crowd counting needs to face these two sides at the same time. To address this issue, we propose a novel end-to-end trainable confusion region discriminating and erasing network called CDENet. Specifically, CDENet is composed of two modules of confusion region mining module (CRM) and guided erasing module (GEM). CRM consists of basic density estimation (BDE) network, confusion region aware bridge and confusion region discriminating network. The BDE network first generates a primary density map, and then the confusion region aware bridge excavates the confusion regions by comparing the primary prediction result with the ground-truth density map. Finally, the confusion region discriminating network learns the difference of feature representations in confusion regions and crowds. Furthermore, GEM gives the refined density map by erasing the confusion regions. We evaluate the proposed method on four crowd counting benchmarks, including ShanghaiTech Part_A, ShanghaiTech Part_B, UCF_CC_50, and UCF-QNRF, and our CDENet achieves superior performance compared with the state-of-the-arts.</p>\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TNNLS.2023.3311020\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2023.3311020","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现有的作品主要关注人群,忽略了背景中包含与人群极其相似外观的混乱区域,而人群计数需要同时面对这两个方面。为了解决这个问题,我们提出了一种新的端到端可训练的混淆区判别和擦除网络,称为CDENet。具体来说,CDENet由混淆区域挖掘模块(CRM)和引导擦除模块(GEM)两个模块组成。CRM由基本密度估计网络、混淆区感知桥和混淆区判别网络组成。BDE网络首先生成初级密度图,然后混淆区域感知桥通过将初级预测结果与地面实况密度图进行比较来挖掘混淆区域。最后,混淆区域判别网络学习混淆区域和人群中特征表示的差异。此外,GEM通过消除混淆区域给出了精细的密度图。我们在四个人群计数基准上对所提出的方法进行了评估,包括ShanghaiTech Part_A、ShanghaiTechPart_B、UCF_CC_50和UCF-QNRF,与现有技术相比,我们的CDENet取得了优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Confusion Region Mining for Crowd Counting.

Existing works mainly focus on crowd and ignore the confusion regions which contain extremely similar appearance to crowd in the background, while crowd counting needs to face these two sides at the same time. To address this issue, we propose a novel end-to-end trainable confusion region discriminating and erasing network called CDENet. Specifically, CDENet is composed of two modules of confusion region mining module (CRM) and guided erasing module (GEM). CRM consists of basic density estimation (BDE) network, confusion region aware bridge and confusion region discriminating network. The BDE network first generates a primary density map, and then the confusion region aware bridge excavates the confusion regions by comparing the primary prediction result with the ground-truth density map. Finally, the confusion region discriminating network learns the difference of feature representations in confusion regions and crowds. Furthermore, GEM gives the refined density map by erasing the confusion regions. We evaluate the proposed method on four crowd counting benchmarks, including ShanghaiTech Part_A, ShanghaiTech Part_B, UCF_CC_50, and UCF-QNRF, and our CDENet achieves superior performance compared with the state-of-the-arts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
期刊最新文献
Alleviate the Impact of Heterogeneity in Network Alignment From Community View Hierarchical Contrastive Learning for Semantic Segmentation Distributed Online Convex Optimization With Statistical Privacy Beyond Euclidean Structures: Collaborative Topological Graph Learning for Multiview Clustering Rethinking Image Skip Connections in StyleGAN2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1