{"title":"肿瘤治疗场(TTFields):临床应用进展及机制见解。","authors":"Xing Li, Kaida Liu, Lidong Xing, Boris Rubinsky","doi":"10.2478/raon-2023-0044","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tumor Treating Fields (TTFields) is a non-invasive modality for cancer treatment that utilizes a specific sinusoidal electric field ranging from 100 kHz to 300 kHz, with an intensity of 1 V/cm to 3 V/cm. Its purpose is to inhibit cancer cell proliferation and induce cell death. Despite promising outcomes from clinical trials, TTFields have received FDA approval for the treatment of glioblastoma multiforme (GBM) and malignant pleural mesothelioma (MPM). Nevertheless, global acceptance of TTFields remains limited. To enhance its clinical application in other types of cancer and gain a better understanding of its mechanisms of action, this review aims to summarize the current research status by examining existing literature on TTFields' clinical trials and mechanism studies.</p><p><strong>Conclusions: </strong>Through this comprehensive review, we seek to stimulate novel ideas and provide physicians, patients, and researchers with a better comprehension of the development of TTFields and its potential applications in cancer treatment.</p>","PeriodicalId":21034,"journal":{"name":"Radiology and Oncology","volume":"57 3","pages":"279-291"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476910/pdf/","citationCount":"0","resultStr":"{\"title\":\"A review of tumor treating fields (TTFields): advancements in clinical applications and mechanistic insights.\",\"authors\":\"Xing Li, Kaida Liu, Lidong Xing, Boris Rubinsky\",\"doi\":\"10.2478/raon-2023-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Tumor Treating Fields (TTFields) is a non-invasive modality for cancer treatment that utilizes a specific sinusoidal electric field ranging from 100 kHz to 300 kHz, with an intensity of 1 V/cm to 3 V/cm. Its purpose is to inhibit cancer cell proliferation and induce cell death. Despite promising outcomes from clinical trials, TTFields have received FDA approval for the treatment of glioblastoma multiforme (GBM) and malignant pleural mesothelioma (MPM). Nevertheless, global acceptance of TTFields remains limited. To enhance its clinical application in other types of cancer and gain a better understanding of its mechanisms of action, this review aims to summarize the current research status by examining existing literature on TTFields' clinical trials and mechanism studies.</p><p><strong>Conclusions: </strong>Through this comprehensive review, we seek to stimulate novel ideas and provide physicians, patients, and researchers with a better comprehension of the development of TTFields and its potential applications in cancer treatment.</p>\",\"PeriodicalId\":21034,\"journal\":{\"name\":\"Radiology and Oncology\",\"volume\":\"57 3\",\"pages\":\"279-291\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476910/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology and Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2478/raon-2023-0044\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology and Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/raon-2023-0044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
A review of tumor treating fields (TTFields): advancements in clinical applications and mechanistic insights.
Background: Tumor Treating Fields (TTFields) is a non-invasive modality for cancer treatment that utilizes a specific sinusoidal electric field ranging from 100 kHz to 300 kHz, with an intensity of 1 V/cm to 3 V/cm. Its purpose is to inhibit cancer cell proliferation and induce cell death. Despite promising outcomes from clinical trials, TTFields have received FDA approval for the treatment of glioblastoma multiforme (GBM) and malignant pleural mesothelioma (MPM). Nevertheless, global acceptance of TTFields remains limited. To enhance its clinical application in other types of cancer and gain a better understanding of its mechanisms of action, this review aims to summarize the current research status by examining existing literature on TTFields' clinical trials and mechanism studies.
Conclusions: Through this comprehensive review, we seek to stimulate novel ideas and provide physicians, patients, and researchers with a better comprehension of the development of TTFields and its potential applications in cancer treatment.
期刊介绍:
Radiology and Oncology is a multidisciplinary journal devoted to the publishing original and high quality scientific papers and review articles, pertinent to diagnostic and interventional radiology, computerized tomography, magnetic resonance, ultrasound, nuclear medicine, radiotherapy, clinical and experimental oncology, radiobiology, medical physics and radiation protection. Therefore, the scope of the journal is to cover beside radiology the diagnostic and therapeutic aspects in oncology, which distinguishes it from other journals in the field.