{"title":"kepok香蕉束作为新型纤维素源对泰国木薯淀粉/聚乙烯醇混合生物塑料热、力学和生物降解性能的影响","authors":"Nelga Autha, Febriana Esza Dewi Siregar, Harmiansyah, Melbi Mahardika, Eka Nurfani","doi":"10.1002/bip.23560","DOIUrl":null,"url":null,"abstract":"<p>Bioplastics were developed to overcome environmental problems that are difficult to decompose in the environment. This study analyzes Thai cassava starch-based bioplastics' tensile strength, biodegradability, moisture absorption, and thermal stability. This study used Thai cassava starch and polyvinyl alcohol (PVA) as matrices, whereas <i>Kepok</i> banana bunch cellulose was employed as a filler. The ratios between starch and cellulose are 10:0 (S1), 9:1 (S2), 8:2 (S3), 7:3 (S4), and 6:4 (S5), while PVA was set constant. The tensile test showed the S4 sample's highest tensile strength of 6.26 MPa, a strain of 3.85%, and a modulus of elasticity of 166 MPa. After 15 days, the maximum soil degradation rate in the S1 sample was 27.9%. The lowest moisture absorption was found in the S5 sample at 8.43%. The highest thermal stability was observed in S4 (316.8°C). This result was significant in reducing the production of plastic waste for environmental remediation.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of kepok banana bunch as new cellulose source on thermal, mechanical, and biodegradability properties of Thai cassava starch/polyvinyl alcohol hybrid-based bioplastic\",\"authors\":\"Nelga Autha, Febriana Esza Dewi Siregar, Harmiansyah, Melbi Mahardika, Eka Nurfani\",\"doi\":\"10.1002/bip.23560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bioplastics were developed to overcome environmental problems that are difficult to decompose in the environment. This study analyzes Thai cassava starch-based bioplastics' tensile strength, biodegradability, moisture absorption, and thermal stability. This study used Thai cassava starch and polyvinyl alcohol (PVA) as matrices, whereas <i>Kepok</i> banana bunch cellulose was employed as a filler. The ratios between starch and cellulose are 10:0 (S1), 9:1 (S2), 8:2 (S3), 7:3 (S4), and 6:4 (S5), while PVA was set constant. The tensile test showed the S4 sample's highest tensile strength of 6.26 MPa, a strain of 3.85%, and a modulus of elasticity of 166 MPa. After 15 days, the maximum soil degradation rate in the S1 sample was 27.9%. The lowest moisture absorption was found in the S5 sample at 8.43%. The highest thermal stability was observed in S4 (316.8°C). This result was significant in reducing the production of plastic waste for environmental remediation.</p>\",\"PeriodicalId\":8866,\"journal\":{\"name\":\"Biopolymers\",\"volume\":\"114 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bip.23560\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23560","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Influence of kepok banana bunch as new cellulose source on thermal, mechanical, and biodegradability properties of Thai cassava starch/polyvinyl alcohol hybrid-based bioplastic
Bioplastics were developed to overcome environmental problems that are difficult to decompose in the environment. This study analyzes Thai cassava starch-based bioplastics' tensile strength, biodegradability, moisture absorption, and thermal stability. This study used Thai cassava starch and polyvinyl alcohol (PVA) as matrices, whereas Kepok banana bunch cellulose was employed as a filler. The ratios between starch and cellulose are 10:0 (S1), 9:1 (S2), 8:2 (S3), 7:3 (S4), and 6:4 (S5), while PVA was set constant. The tensile test showed the S4 sample's highest tensile strength of 6.26 MPa, a strain of 3.85%, and a modulus of elasticity of 166 MPa. After 15 days, the maximum soil degradation rate in the S1 sample was 27.9%. The lowest moisture absorption was found in the S5 sample at 8.43%. The highest thermal stability was observed in S4 (316.8°C). This result was significant in reducing the production of plastic waste for environmental remediation.
期刊介绍:
Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.