Ying Zhang, Haijian Wang, Takashi Kumazawa, Dongying Ju
{"title":"医用可生物降解镁合金对大鼠股骨长期固定模型体内降解及骨反应的影响。","authors":"Ying Zhang, Haijian Wang, Takashi Kumazawa, Dongying Ju","doi":"10.3233/BME-222514","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>It is of great significance to understand the effect of the different corrosion behaviors of magnesium (Mg) alloys manufactured using different casting methods and implanted with different methods on the long-term implantation to expand the application of Mg-based biomedical implants.</p><p><strong>Objective: </strong>The effects of four different casting and rolling speeds on the microstructure of an Mg-rare earth (Mg-Re) alloy were analyzed using electron backscatter diffraction (EBSD).</p><p><strong>Method: </strong>Four Mg alloys were obtained using vertical two-roll casting (TRC) at 10 m/min, 16 m/min, 24 m/min, and 30 m/min, and their microstructure, corrosion behavior and bone reaction in vivo were studied.</p><p><strong>Results: </strong>The corrosion resistance of the alloy increases with an increase in casting speed and finer grain size of the cast-rolled parts. The Mg-Re alloys with TRC-10 m/min and TRC-30 m/min were selected for animal experiments. The two Mg alloys were made into metal rods and inserted into the rat femur to simulate the effect of Mg-Re on femoral healing under an injury condition. The rods were implanted for a long time to judge the effects of the Mg-Re alloy on the body. The TRC-30 m/min implants obtained highly mature new bone tissue in the case of bone injury.</p><p><strong>Conclusion: </strong>The in vivo experiments showed that the corrosion resistance of the TRC-30 m/min implant was better than that of the TRC-10 m/min implant. After 32 weeks of implantation, there were no pathological changes in the liver, heart, or kidney of rats in the TRC-30 m/min group, and the cell structure was normal.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of medical biodegradable magnesium alloy in vivo degradation and bone response in a rat femur model with long-term fixation.\",\"authors\":\"Ying Zhang, Haijian Wang, Takashi Kumazawa, Dongying Ju\",\"doi\":\"10.3233/BME-222514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>It is of great significance to understand the effect of the different corrosion behaviors of magnesium (Mg) alloys manufactured using different casting methods and implanted with different methods on the long-term implantation to expand the application of Mg-based biomedical implants.</p><p><strong>Objective: </strong>The effects of four different casting and rolling speeds on the microstructure of an Mg-rare earth (Mg-Re) alloy were analyzed using electron backscatter diffraction (EBSD).</p><p><strong>Method: </strong>Four Mg alloys were obtained using vertical two-roll casting (TRC) at 10 m/min, 16 m/min, 24 m/min, and 30 m/min, and their microstructure, corrosion behavior and bone reaction in vivo were studied.</p><p><strong>Results: </strong>The corrosion resistance of the alloy increases with an increase in casting speed and finer grain size of the cast-rolled parts. The Mg-Re alloys with TRC-10 m/min and TRC-30 m/min were selected for animal experiments. The two Mg alloys were made into metal rods and inserted into the rat femur to simulate the effect of Mg-Re on femoral healing under an injury condition. The rods were implanted for a long time to judge the effects of the Mg-Re alloy on the body. The TRC-30 m/min implants obtained highly mature new bone tissue in the case of bone injury.</p><p><strong>Conclusion: </strong>The in vivo experiments showed that the corrosion resistance of the TRC-30 m/min implant was better than that of the TRC-10 m/min implant. After 32 weeks of implantation, there were no pathological changes in the liver, heart, or kidney of rats in the TRC-30 m/min group, and the cell structure was normal.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/BME-222514\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BME-222514","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The effect of medical biodegradable magnesium alloy in vivo degradation and bone response in a rat femur model with long-term fixation.
Background: It is of great significance to understand the effect of the different corrosion behaviors of magnesium (Mg) alloys manufactured using different casting methods and implanted with different methods on the long-term implantation to expand the application of Mg-based biomedical implants.
Objective: The effects of four different casting and rolling speeds on the microstructure of an Mg-rare earth (Mg-Re) alloy were analyzed using electron backscatter diffraction (EBSD).
Method: Four Mg alloys were obtained using vertical two-roll casting (TRC) at 10 m/min, 16 m/min, 24 m/min, and 30 m/min, and their microstructure, corrosion behavior and bone reaction in vivo were studied.
Results: The corrosion resistance of the alloy increases with an increase in casting speed and finer grain size of the cast-rolled parts. The Mg-Re alloys with TRC-10 m/min and TRC-30 m/min were selected for animal experiments. The two Mg alloys were made into metal rods and inserted into the rat femur to simulate the effect of Mg-Re on femoral healing under an injury condition. The rods were implanted for a long time to judge the effects of the Mg-Re alloy on the body. The TRC-30 m/min implants obtained highly mature new bone tissue in the case of bone injury.
Conclusion: The in vivo experiments showed that the corrosion resistance of the TRC-30 m/min implant was better than that of the TRC-10 m/min implant. After 32 weeks of implantation, there were no pathological changes in the liver, heart, or kidney of rats in the TRC-30 m/min group, and the cell structure was normal.
期刊介绍:
The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.