HNRNPF/H RNA结合蛋白与疾病。

IF 6.4 2区 生物学 Q1 CELL BIOLOGY Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-09-01 Epub Date: 2023-04-11 DOI:10.1002/wrna.1788
Tayvia Brownmiller, Natasha J Caplen
{"title":"HNRNPF/H RNA结合蛋白与疾病。","authors":"Tayvia Brownmiller, Natasha J Caplen","doi":"10.1002/wrna.1788","DOIUrl":null,"url":null,"abstract":"<p><p>The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":"14 5","pages":"e1788"},"PeriodicalIF":6.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523889/pdf/","citationCount":"0","resultStr":"{\"title\":\"The HNRNPF/H RNA binding proteins and disease.\",\"authors\":\"Tayvia Brownmiller, Natasha J Caplen\",\"doi\":\"10.1002/wrna.1788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.</p>\",\"PeriodicalId\":23886,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: RNA\",\"volume\":\"14 5\",\"pages\":\"e1788\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523889/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/wrna.1788\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/wrna.1788","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

异质核RNA蛋白HNRNPF/H家族的成员HNRNPF、HNRNPH1、HNRNPH2、HNRNPH3和GRSF1是RNA成熟的关键调节因子。这些蛋白质的记录功能包括调节剪接,特别是选择性剪接,RNA的5'封端和3'多腺苷酸化,以及RNA输出。这些蛋白质被分配到HNRNPF/H蛋白质家族成员与它们的RNA识别基序的氨基酸组成的差异有关,这与其他RNA结合蛋白(RBP)的氨基酸组成不同。HNRNPF/H蛋白通常结合富含鸟嘌呤(G)残基的RNA序列,包括在阳离子存在下有可能形成高阶G-四链体结构的序列。随着最近对RBPs HNRNPF/H家族成员参与几种疾病状态的描述,进一步研究其成员的必要性得到了加强,包括儿童肿瘤尤因肉瘤和血液系统恶性肿瘤套细胞淋巴瘤;新描述的发育综合征组;以及神经元相关疾病,包括成瘾行为。在这里,为了促进对RBPs的HNRNPF/H家族的研究,我们讨论了编码这些蛋白质的基因的特征、它们的结构和功能,以及对疾病的新贡献。这篇文章分类为:RNA在疾病和发展中>RNA在疾病RNA处理中>剪接调控/选择性剪接RNA与蛋白质和其他分子的相互作用>蛋白质-RNA相互作用:功能意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The HNRNPF/H RNA binding proteins and disease.

The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.80
自引率
4.10%
发文量
67
审稿时长
6-12 weeks
期刊介绍: WIREs RNA aims to provide comprehensive, up-to-date, and coherent coverage of this interesting and growing field, providing a framework for both RNA experts and interdisciplinary researchers to not only gain perspective in areas of RNA biology, but to generate new insights and applications as well. Major topics to be covered are: RNA Structure and Dynamics; RNA Evolution and Genomics; RNA-Based Catalysis; RNA Interactions with Proteins and Other Molecules; Translation; RNA Processing; RNA Export/Localization; RNA Turnover and Surveillance; Regulatory RNAs/RNAi/Riboswitches; RNA in Disease and Development; and RNA Methods.
期刊最新文献
Three Stages of Nascent Protein Translocation Through the Ribosome Exit Tunnel. Decoding the role of RNA sequences and their interactions in influenza A virus infection and adaptation. Current Understandings and Open Hypotheses on Extracellular Circular RNAs. Contribution of DNA/RNA Structures Formed by Expanded CGG/CCG Repeats Within the FMR1 Locus in the Pathogenesis of Fragile X-Associated Disorders. Integrated Biochemical and Computational Methods for Deciphering RNA-Processing Codes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1