Ziyan Wang , Bradley M. Bartholomai , Jennifer J. Loros , Jay C. Dunlap
{"title":"粗神经孢子虫四色和光电转换活细胞成像的优化荧光蛋白","authors":"Ziyan Wang , Bradley M. Bartholomai , Jennifer J. Loros , Jay C. Dunlap","doi":"10.1016/j.fgb.2022.103763","DOIUrl":null,"url":null,"abstract":"<div><p><span>Fungal cells<span> are quite unique among life in their organization and structure, and yet implementation of many tools recently developed for fluorescence imaging in animal systems and yeast has been slow in filamentous fungi. Here we present analysis of properties of fluorescent proteins in </span></span><span><em>Neurospora crassa</em></span><span><span> as well as describing genetic tools for the expression of these proteins that may be useful beyond cell biology applications. The brightness and photostability of ten different fluorescent </span>protein tags were compared in a well-controlled system; six different promoters are described for the assessment of the fluorescent proteins and varying levels of expression, as well as a customizable bidirectional promoter system. We present an array of fluorescent proteins suitable for use across the visible light spectrum to allow for 4-color imaging, in addition to a photoconvertible fluorescent protein that enables a change in the color of a small subset of proteins in the cell. These tools build on the rich history of cell biology research in filamentous fungi and provide new tools to help expand research capabilities.</span></p></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501358/pdf/nihms-1927181.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimized fluorescent proteins for 4-color and photoconvertible live-cell imaging in Neurospora crassa\",\"authors\":\"Ziyan Wang , Bradley M. Bartholomai , Jennifer J. Loros , Jay C. Dunlap\",\"doi\":\"10.1016/j.fgb.2022.103763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Fungal cells<span> are quite unique among life in their organization and structure, and yet implementation of many tools recently developed for fluorescence imaging in animal systems and yeast has been slow in filamentous fungi. Here we present analysis of properties of fluorescent proteins in </span></span><span><em>Neurospora crassa</em></span><span><span> as well as describing genetic tools for the expression of these proteins that may be useful beyond cell biology applications. The brightness and photostability of ten different fluorescent </span>protein tags were compared in a well-controlled system; six different promoters are described for the assessment of the fluorescent proteins and varying levels of expression, as well as a customizable bidirectional promoter system. We present an array of fluorescent proteins suitable for use across the visible light spectrum to allow for 4-color imaging, in addition to a photoconvertible fluorescent protein that enables a change in the color of a small subset of proteins in the cell. These tools build on the rich history of cell biology research in filamentous fungi and provide new tools to help expand research capabilities.</span></p></div>\",\"PeriodicalId\":55135,\"journal\":{\"name\":\"Fungal Genetics and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501358/pdf/nihms-1927181.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Genetics and Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1087184522001086\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1087184522001086","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Optimized fluorescent proteins for 4-color and photoconvertible live-cell imaging in Neurospora crassa
Fungal cells are quite unique among life in their organization and structure, and yet implementation of many tools recently developed for fluorescence imaging in animal systems and yeast has been slow in filamentous fungi. Here we present analysis of properties of fluorescent proteins in Neurospora crassa as well as describing genetic tools for the expression of these proteins that may be useful beyond cell biology applications. The brightness and photostability of ten different fluorescent protein tags were compared in a well-controlled system; six different promoters are described for the assessment of the fluorescent proteins and varying levels of expression, as well as a customizable bidirectional promoter system. We present an array of fluorescent proteins suitable for use across the visible light spectrum to allow for 4-color imaging, in addition to a photoconvertible fluorescent protein that enables a change in the color of a small subset of proteins in the cell. These tools build on the rich history of cell biology research in filamentous fungi and provide new tools to help expand research capabilities.
期刊介绍:
Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny.
Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists.
Research Areas include:
• Biochemistry
• Cytology
• Developmental biology
• Evolutionary biology
• Genetics
• Molecular biology
• Phylogeny
• Physiology.