Quan Liu, Xiao Ma, Yanchen Pei, Wendan Cheng, Zhengwei Wu
{"title":"体外评估米诺环素电纺纳米纤维膜上 BMSCs 的早期增殖。","authors":"Quan Liu, Xiao Ma, Yanchen Pei, Wendan Cheng, Zhengwei Wu","doi":"10.3233/BME-230002","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Electrospun nanofibers could simulate the natural extracellular matrix (ECM) of the host bone, while minocycline (MINO) is a broad-spectrum tetracycline antibiotic which has been found to have multiple non-antibiotics biological effects that promotes osteogenesis in vitro and in vivo.</p><p><strong>Objective: </strong>The present study aims at constructing a polylactic acid (PLA) electrospun nanofiber membrane loaded with MINO to enhance Bone marrow mesenchymal stem cells (BMSCs) adhesion and proliferation for early clinical treatment.</p><p><strong>Methods: </strong>The MINO-PLA membrane were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and in vitro drug release study. The antibacterial ability was also investigated. In addition, in vitro cellular proliferation experiment was performed to verify whether the PLA electrospun nanofibers membrane loaded with MINO enhance BMSCs adhesion and proliferation.</p><p><strong>Results: </strong>Analyzing the drug release and cell growth results, it was found that only the effective concentration of MINO-PLA could help the growth of BMSCs in the short term. This is related to the drug release rate of MINO-PLA and the initial concentration of MINO.</p><p><strong>Conclusion: </strong>This study shows that by controlling the concentration and release rate of MINO with electrospinning PLA, BMSCs could proliferate on it, and a new bone repair material had been made in this study.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro evaluation of BMSCs early proliferation on minocycline-loaded electrospun nanofibers membrane.\",\"authors\":\"Quan Liu, Xiao Ma, Yanchen Pei, Wendan Cheng, Zhengwei Wu\",\"doi\":\"10.3233/BME-230002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Electrospun nanofibers could simulate the natural extracellular matrix (ECM) of the host bone, while minocycline (MINO) is a broad-spectrum tetracycline antibiotic which has been found to have multiple non-antibiotics biological effects that promotes osteogenesis in vitro and in vivo.</p><p><strong>Objective: </strong>The present study aims at constructing a polylactic acid (PLA) electrospun nanofiber membrane loaded with MINO to enhance Bone marrow mesenchymal stem cells (BMSCs) adhesion and proliferation for early clinical treatment.</p><p><strong>Methods: </strong>The MINO-PLA membrane were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and in vitro drug release study. The antibacterial ability was also investigated. In addition, in vitro cellular proliferation experiment was performed to verify whether the PLA electrospun nanofibers membrane loaded with MINO enhance BMSCs adhesion and proliferation.</p><p><strong>Results: </strong>Analyzing the drug release and cell growth results, it was found that only the effective concentration of MINO-PLA could help the growth of BMSCs in the short term. This is related to the drug release rate of MINO-PLA and the initial concentration of MINO.</p><p><strong>Conclusion: </strong>This study shows that by controlling the concentration and release rate of MINO with electrospinning PLA, BMSCs could proliferate on it, and a new bone repair material had been made in this study.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/BME-230002\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BME-230002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
In vitro evaluation of BMSCs early proliferation on minocycline-loaded electrospun nanofibers membrane.
Background: Electrospun nanofibers could simulate the natural extracellular matrix (ECM) of the host bone, while minocycline (MINO) is a broad-spectrum tetracycline antibiotic which has been found to have multiple non-antibiotics biological effects that promotes osteogenesis in vitro and in vivo.
Objective: The present study aims at constructing a polylactic acid (PLA) electrospun nanofiber membrane loaded with MINO to enhance Bone marrow mesenchymal stem cells (BMSCs) adhesion and proliferation for early clinical treatment.
Methods: The MINO-PLA membrane were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and in vitro drug release study. The antibacterial ability was also investigated. In addition, in vitro cellular proliferation experiment was performed to verify whether the PLA electrospun nanofibers membrane loaded with MINO enhance BMSCs adhesion and proliferation.
Results: Analyzing the drug release and cell growth results, it was found that only the effective concentration of MINO-PLA could help the growth of BMSCs in the short term. This is related to the drug release rate of MINO-PLA and the initial concentration of MINO.
Conclusion: This study shows that by controlling the concentration and release rate of MINO with electrospinning PLA, BMSCs could proliferate on it, and a new bone repair material had been made in this study.
期刊介绍:
The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.