Jungang Lan, Yeqing Wang, Shusheng Yue, Duo Xu, Yinan Li, Xiangyu Peng, Jiao Hu, Enguo Ju, Shanping He, Tingting Li
{"title":"靶向FoxO蛋白诱导KSHV的裂解性再激活用于治疗疱疹病毒原发性渗出性淋巴瘤。","authors":"Jungang Lan, Yeqing Wang, Shusheng Yue, Duo Xu, Yinan Li, Xiangyu Peng, Jiao Hu, Enguo Ju, Shanping He, Tingting Li","doi":"10.1371/journal.ppat.1011581","DOIUrl":null,"url":null,"abstract":"<p><p>Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus consisting of both latent and lytic life cycles. Primary effusion lymphoma (PEL) is an aggressive B-cell lineage lymphoma, dominantly latently infected by KSHV. The latent infection of KSHV is persistent and poses an obstacle to killing tumor cells. Like the \"shock and kill\" strategy designed to eliminate latent HIV reservoir, methods that induce viral lytic reactivation in tumor latently infected by viruses represent a unique antineoplastic strategy, as it could potentially increase the specificity of cytotoxicity in cancer. Inspired by this conception, we proposed that the induction of KSHV lytic reactivation from latency could be a potential therapeutic stratagem for KSHV-associated cancers. Oxidative stress, the clinical hallmark of PEL, is one of the most prominent inducers for KSHV reactivation. Paradoxically, we found that hydrogen peroxide (H2O2) triggers robust cytotoxic effects on KSHV-negative rather than KSHV-positive B lymphoma cells in a dose-dependent manner. Mechanistically, we identified forkhead box protein O1 (FoxO1) and FoxO3 as irrevocable antioxidant defense genes and both of them are upregulated by KSHV latent infection, which is essential for the promoted ROS scavenging in KSHV-positive B lymphoma cells. Pharmacological inhibition or functional knockdown of either FoxO1 or FoxO3 is sufficient to ablate the antioxidant ability and therefore increases the intracellular ROS level that further reverses KSHV from latency to active lytic replication in PEL cells, resulting in tremendous cell death both in vitro and in vivo. Additionally, the elevated level of ROS by inhibiting FoxO proteins further sensitizes PEL cells to ROS-induced apoptosis. Our study therefore demonstrated that the lytic reactivation of KSHV by inhibiting FoxO proteins is a promising therapeutic approach for PEL, which could be further extended to other virus-associated diseases.</p>","PeriodicalId":20178,"journal":{"name":"PLoS Pathogens","volume":"19 8","pages":"e1011581"},"PeriodicalIF":6.7000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468091/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting FoxO proteins induces lytic reactivation of KSHV for treating herpesviral primary effusion lymphoma.\",\"authors\":\"Jungang Lan, Yeqing Wang, Shusheng Yue, Duo Xu, Yinan Li, Xiangyu Peng, Jiao Hu, Enguo Ju, Shanping He, Tingting Li\",\"doi\":\"10.1371/journal.ppat.1011581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus consisting of both latent and lytic life cycles. Primary effusion lymphoma (PEL) is an aggressive B-cell lineage lymphoma, dominantly latently infected by KSHV. The latent infection of KSHV is persistent and poses an obstacle to killing tumor cells. Like the \\\"shock and kill\\\" strategy designed to eliminate latent HIV reservoir, methods that induce viral lytic reactivation in tumor latently infected by viruses represent a unique antineoplastic strategy, as it could potentially increase the specificity of cytotoxicity in cancer. Inspired by this conception, we proposed that the induction of KSHV lytic reactivation from latency could be a potential therapeutic stratagem for KSHV-associated cancers. Oxidative stress, the clinical hallmark of PEL, is one of the most prominent inducers for KSHV reactivation. Paradoxically, we found that hydrogen peroxide (H2O2) triggers robust cytotoxic effects on KSHV-negative rather than KSHV-positive B lymphoma cells in a dose-dependent manner. Mechanistically, we identified forkhead box protein O1 (FoxO1) and FoxO3 as irrevocable antioxidant defense genes and both of them are upregulated by KSHV latent infection, which is essential for the promoted ROS scavenging in KSHV-positive B lymphoma cells. Pharmacological inhibition or functional knockdown of either FoxO1 or FoxO3 is sufficient to ablate the antioxidant ability and therefore increases the intracellular ROS level that further reverses KSHV from latency to active lytic replication in PEL cells, resulting in tremendous cell death both in vitro and in vivo. Additionally, the elevated level of ROS by inhibiting FoxO proteins further sensitizes PEL cells to ROS-induced apoptosis. Our study therefore demonstrated that the lytic reactivation of KSHV by inhibiting FoxO proteins is a promising therapeutic approach for PEL, which could be further extended to other virus-associated diseases.</p>\",\"PeriodicalId\":20178,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"19 8\",\"pages\":\"e1011581\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468091/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1011581\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1011581","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
Targeting FoxO proteins induces lytic reactivation of KSHV for treating herpesviral primary effusion lymphoma.
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus consisting of both latent and lytic life cycles. Primary effusion lymphoma (PEL) is an aggressive B-cell lineage lymphoma, dominantly latently infected by KSHV. The latent infection of KSHV is persistent and poses an obstacle to killing tumor cells. Like the "shock and kill" strategy designed to eliminate latent HIV reservoir, methods that induce viral lytic reactivation in tumor latently infected by viruses represent a unique antineoplastic strategy, as it could potentially increase the specificity of cytotoxicity in cancer. Inspired by this conception, we proposed that the induction of KSHV lytic reactivation from latency could be a potential therapeutic stratagem for KSHV-associated cancers. Oxidative stress, the clinical hallmark of PEL, is one of the most prominent inducers for KSHV reactivation. Paradoxically, we found that hydrogen peroxide (H2O2) triggers robust cytotoxic effects on KSHV-negative rather than KSHV-positive B lymphoma cells in a dose-dependent manner. Mechanistically, we identified forkhead box protein O1 (FoxO1) and FoxO3 as irrevocable antioxidant defense genes and both of them are upregulated by KSHV latent infection, which is essential for the promoted ROS scavenging in KSHV-positive B lymphoma cells. Pharmacological inhibition or functional knockdown of either FoxO1 or FoxO3 is sufficient to ablate the antioxidant ability and therefore increases the intracellular ROS level that further reverses KSHV from latency to active lytic replication in PEL cells, resulting in tremendous cell death both in vitro and in vivo. Additionally, the elevated level of ROS by inhibiting FoxO proteins further sensitizes PEL cells to ROS-induced apoptosis. Our study therefore demonstrated that the lytic reactivation of KSHV by inhibiting FoxO proteins is a promising therapeutic approach for PEL, which could be further extended to other virus-associated diseases.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.