{"title":"气候变化时代北极的普遍热气候指数:以阿拉斯加和楚科奇为例研究。","authors":"E.A. Grigorieva, V.A. Alexeev, J.E. Walsh","doi":"10.1007/s00484-023-02531-2","DOIUrl":null,"url":null,"abstract":"<div><p>The modern unambiguous climate change reveals in a rapid increase of air temperature, which is more distinctly expressed in the Arctic than in any other part of the world, affecting people health and well-being. The main objective of the current research is to explore the inter- and intra-annual changes in thermal stress for people in the Arctic, specifically for two parts of Beringia: Alaska, USA, and Chukotka, Russia, using climatology of the universal thermal climate index (UTCI). Data for 39 locations are taken from the ERA5-HEAT reanalysis for the period 1979–2020. Climatologically, the study area is divided into four subregions in Alaska: North, Interior, West and South, and two in Chukotka: Interior and Coast. The extreme coldest UTCI categories (1 and 2) are most common in coastal locations of northern Alaska and Chukotka, where strong winds exacerbate the low temperatures during winter. The results show that the frequency of category 1 (UTCI<−40°C) varies spatially from a quarter of all hours annually in Alaska North to almost zero in Alaska South. On the other hand, the warmest categories are rarely reached almost everywhere in Alaska and Chukotka, and even categories 7 and 8 (UTCI between +26 and +38°C) are found occasionally only at interior locations. Category 6 with no thermal stress (UTCI between +9 and+26°C) has frequencies up to 3% and 25% in Alaska North and Interior, respectively. The extremely cold thermal stress frequencies have substantially decreased over the 1979–2020 period, especially in Alaska North and Chukotka Coast. At the same time, the number of hours with UTCI in the comfortable category of thermal perception has increased depending on subregion, from 25 to 203 h/year. Overall, a decrease in the UTCI categories of extremely cold stress is coupled with an increase in the comfortable range in both Alaska and Chukotka. The salient conclusion is that, from the point of view of comfort and safety, global warming has a positive impact on the climatology of thermal stress in the Arctic, providing advantages for the development of tourism and recreation.</p></div>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":"67 11","pages":"1703 - 1721"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00484-023-02531-2.pdf","citationCount":"1","resultStr":"{\"title\":\"Universal thermal climate index in the Arctic in an era of climate change: Alaska and Chukotka as a case study\",\"authors\":\"E.A. Grigorieva, V.A. Alexeev, J.E. Walsh\",\"doi\":\"10.1007/s00484-023-02531-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The modern unambiguous climate change reveals in a rapid increase of air temperature, which is more distinctly expressed in the Arctic than in any other part of the world, affecting people health and well-being. The main objective of the current research is to explore the inter- and intra-annual changes in thermal stress for people in the Arctic, specifically for two parts of Beringia: Alaska, USA, and Chukotka, Russia, using climatology of the universal thermal climate index (UTCI). Data for 39 locations are taken from the ERA5-HEAT reanalysis for the period 1979–2020. Climatologically, the study area is divided into four subregions in Alaska: North, Interior, West and South, and two in Chukotka: Interior and Coast. The extreme coldest UTCI categories (1 and 2) are most common in coastal locations of northern Alaska and Chukotka, where strong winds exacerbate the low temperatures during winter. The results show that the frequency of category 1 (UTCI<−40°C) varies spatially from a quarter of all hours annually in Alaska North to almost zero in Alaska South. On the other hand, the warmest categories are rarely reached almost everywhere in Alaska and Chukotka, and even categories 7 and 8 (UTCI between +26 and +38°C) are found occasionally only at interior locations. Category 6 with no thermal stress (UTCI between +9 and+26°C) has frequencies up to 3% and 25% in Alaska North and Interior, respectively. The extremely cold thermal stress frequencies have substantially decreased over the 1979–2020 period, especially in Alaska North and Chukotka Coast. At the same time, the number of hours with UTCI in the comfortable category of thermal perception has increased depending on subregion, from 25 to 203 h/year. Overall, a decrease in the UTCI categories of extremely cold stress is coupled with an increase in the comfortable range in both Alaska and Chukotka. The salient conclusion is that, from the point of view of comfort and safety, global warming has a positive impact on the climatology of thermal stress in the Arctic, providing advantages for the development of tourism and recreation.</p></div>\",\"PeriodicalId\":588,\"journal\":{\"name\":\"International Journal of Biometeorology\",\"volume\":\"67 11\",\"pages\":\"1703 - 1721\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00484-023-02531-2.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biometeorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00484-023-02531-2\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00484-023-02531-2","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Universal thermal climate index in the Arctic in an era of climate change: Alaska and Chukotka as a case study
The modern unambiguous climate change reveals in a rapid increase of air temperature, which is more distinctly expressed in the Arctic than in any other part of the world, affecting people health and well-being. The main objective of the current research is to explore the inter- and intra-annual changes in thermal stress for people in the Arctic, specifically for two parts of Beringia: Alaska, USA, and Chukotka, Russia, using climatology of the universal thermal climate index (UTCI). Data for 39 locations are taken from the ERA5-HEAT reanalysis for the period 1979–2020. Climatologically, the study area is divided into four subregions in Alaska: North, Interior, West and South, and two in Chukotka: Interior and Coast. The extreme coldest UTCI categories (1 and 2) are most common in coastal locations of northern Alaska and Chukotka, where strong winds exacerbate the low temperatures during winter. The results show that the frequency of category 1 (UTCI<−40°C) varies spatially from a quarter of all hours annually in Alaska North to almost zero in Alaska South. On the other hand, the warmest categories are rarely reached almost everywhere in Alaska and Chukotka, and even categories 7 and 8 (UTCI between +26 and +38°C) are found occasionally only at interior locations. Category 6 with no thermal stress (UTCI between +9 and+26°C) has frequencies up to 3% and 25% in Alaska North and Interior, respectively. The extremely cold thermal stress frequencies have substantially decreased over the 1979–2020 period, especially in Alaska North and Chukotka Coast. At the same time, the number of hours with UTCI in the comfortable category of thermal perception has increased depending on subregion, from 25 to 203 h/year. Overall, a decrease in the UTCI categories of extremely cold stress is coupled with an increase in the comfortable range in both Alaska and Chukotka. The salient conclusion is that, from the point of view of comfort and safety, global warming has a positive impact on the climatology of thermal stress in the Arctic, providing advantages for the development of tourism and recreation.
期刊介绍:
The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment.
Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health.
The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.