{"title":"胼胝体切开术后的半球间整合:波芬伯格和冗余目标范例的元分析","authors":"René Westerhausen","doi":"10.1007/s11065-022-09569-w","DOIUrl":null,"url":null,"abstract":"<p><p>The central role of the corpus callosum in integrating perception and cognition across the cerebral hemispheres makes it highly desirable for clinical and basic research to have a repertoire of experimental paradigms assessing callosal functioning. Here, the objective was to assess the validity of two such paradigms (Poffenberger, redundant-target paradigms) by conducting single-step meta-analyses on individual case data of callosotomy patients. Studies were identified by systematic literature search (source: Pubmed and WebOfKnowledge, date: 07.03.2022) and all studies were included that reported callosotomy case data for either paradigm. Twenty-two studies (38 unique cases) provided 116 observations of the crossed-uncrossed difference (CUD) for the Poffenberger paradigm, while ten studies (22 cases, 103 observations) provided bilateral redundancy gain (bRG) measures. Using linear-mixed models with \"individual\" and \"experiment\" as random-effects variable, the mean CUD was estimated at 60.6 ms (CI<sub>95%</sub>: 45.3; 75.9) for commissurotomy, 43.5 ms (26.7; 60.2) for complete callosotomy, and 8.8 ms (1.1; 16.6) for partial anterior-medial callosotomy patients. The estimates of commissurotomy/callosotomy patients differed significantly from patients with partial callosotomy and healthy controls. The mean bRG<sub>min</sub> (minimum unilateral reference) was estimated at 42.8 ms (27.1;58.4) for patients with complete and 30.8 ms (16.8; 44.7) for patients with partial callosotomy, both differing significantly from controls. One limitation was that different formulas for bRG were used, making it necessary to split the sample and reducing test power of some analyses. Nevertheless, the present findings suggest that both paradigms assess interhemispheric callosal integration, confirming their construct validity, but likely test distinct callosal functions.</p>","PeriodicalId":49754,"journal":{"name":"Neuropsychology Review","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769931/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interhemispheric Integration after Callosotomy: A Meta-Analysis of Poffenberger and Redundant-Target Paradigms.\",\"authors\":\"René Westerhausen\",\"doi\":\"10.1007/s11065-022-09569-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The central role of the corpus callosum in integrating perception and cognition across the cerebral hemispheres makes it highly desirable for clinical and basic research to have a repertoire of experimental paradigms assessing callosal functioning. Here, the objective was to assess the validity of two such paradigms (Poffenberger, redundant-target paradigms) by conducting single-step meta-analyses on individual case data of callosotomy patients. Studies were identified by systematic literature search (source: Pubmed and WebOfKnowledge, date: 07.03.2022) and all studies were included that reported callosotomy case data for either paradigm. Twenty-two studies (38 unique cases) provided 116 observations of the crossed-uncrossed difference (CUD) for the Poffenberger paradigm, while ten studies (22 cases, 103 observations) provided bilateral redundancy gain (bRG) measures. Using linear-mixed models with \\\"individual\\\" and \\\"experiment\\\" as random-effects variable, the mean CUD was estimated at 60.6 ms (CI<sub>95%</sub>: 45.3; 75.9) for commissurotomy, 43.5 ms (26.7; 60.2) for complete callosotomy, and 8.8 ms (1.1; 16.6) for partial anterior-medial callosotomy patients. The estimates of commissurotomy/callosotomy patients differed significantly from patients with partial callosotomy and healthy controls. The mean bRG<sub>min</sub> (minimum unilateral reference) was estimated at 42.8 ms (27.1;58.4) for patients with complete and 30.8 ms (16.8; 44.7) for patients with partial callosotomy, both differing significantly from controls. One limitation was that different formulas for bRG were used, making it necessary to split the sample and reducing test power of some analyses. Nevertheless, the present findings suggest that both paradigms assess interhemispheric callosal integration, confirming their construct validity, but likely test distinct callosal functions.</p>\",\"PeriodicalId\":49754,\"journal\":{\"name\":\"Neuropsychology Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769931/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropsychology Review\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s11065-022-09569-w\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychology Review","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11065-022-09569-w","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Interhemispheric Integration after Callosotomy: A Meta-Analysis of Poffenberger and Redundant-Target Paradigms.
The central role of the corpus callosum in integrating perception and cognition across the cerebral hemispheres makes it highly desirable for clinical and basic research to have a repertoire of experimental paradigms assessing callosal functioning. Here, the objective was to assess the validity of two such paradigms (Poffenberger, redundant-target paradigms) by conducting single-step meta-analyses on individual case data of callosotomy patients. Studies were identified by systematic literature search (source: Pubmed and WebOfKnowledge, date: 07.03.2022) and all studies were included that reported callosotomy case data for either paradigm. Twenty-two studies (38 unique cases) provided 116 observations of the crossed-uncrossed difference (CUD) for the Poffenberger paradigm, while ten studies (22 cases, 103 observations) provided bilateral redundancy gain (bRG) measures. Using linear-mixed models with "individual" and "experiment" as random-effects variable, the mean CUD was estimated at 60.6 ms (CI95%: 45.3; 75.9) for commissurotomy, 43.5 ms (26.7; 60.2) for complete callosotomy, and 8.8 ms (1.1; 16.6) for partial anterior-medial callosotomy patients. The estimates of commissurotomy/callosotomy patients differed significantly from patients with partial callosotomy and healthy controls. The mean bRGmin (minimum unilateral reference) was estimated at 42.8 ms (27.1;58.4) for patients with complete and 30.8 ms (16.8; 44.7) for patients with partial callosotomy, both differing significantly from controls. One limitation was that different formulas for bRG were used, making it necessary to split the sample and reducing test power of some analyses. Nevertheless, the present findings suggest that both paradigms assess interhemispheric callosal integration, confirming their construct validity, but likely test distinct callosal functions.
期刊介绍:
Neuropsychology Review is a quarterly, refereed publication devoted to integrative review papers on substantive content areas in neuropsychology, with particular focus on populations with endogenous or acquired conditions affecting brain and function and on translational research providing a mechanistic understanding of clinical problems. Publication of new data is not the purview of the journal. Articles are written by international specialists in the field, discussing such complex issues as distinctive functional features of central nervous system disease and injury; challenges in early diagnosis; the impact of genes and environment on function; risk factors for functional impairment; treatment efficacy of neuropsychological rehabilitation; the role of neuroimaging, neuroelectrophysiology, and other neurometric modalities in explicating function; clinical trial design; neuropsychological function and its substrates characteristic of normal development and aging; and neuropsychological dysfunction and its substrates in neurological, psychiatric, and medical conditions. The journal''s broad perspective is supported by an outstanding, multidisciplinary editorial review board guided by the aim to provide students and professionals, clinicians and researchers with scholarly articles that critically and objectively summarize and synthesize the strengths and weaknesses in the literature and propose novel hypotheses, methods of analysis, and links to other fields.