水稻除草剂芬喹诺酮的研制。

IF 1.5 4区 农林科学 Q2 ENTOMOLOGY Journal of Pesticide Science Pub Date : 2022-08-20 DOI:10.1584/jpestics.J22-02
Atsushi Nagamatsu, Ken Ueda, Ryuji Tamai, Shinki Tani, Shunsuke Yamamoto
{"title":"水稻除草剂芬喹诺酮的研制。","authors":"Atsushi Nagamatsu,&nbsp;Ken Ueda,&nbsp;Ryuji Tamai,&nbsp;Shinki Tani,&nbsp;Shunsuke Yamamoto","doi":"10.1584/jpestics.J22-02","DOIUrl":null,"url":null,"abstract":"<p><p>Fenquinotrione is a novel rice herbicide that was discovered and developed by Kumiai Chemical Industry Co., Ltd. It can control a wide range of broadleaf and sedge weeds with excellent rice selectivity at 30 g a.i./10 a and is as effective as the wild type on acetolactate synthase inhibitor-resistant weeds. Our metabolic and molecular biological studies showed that CYP81A6-mediated demethylation and subsequent glucose conjugation are responsible for the safety of fenquinotrione in rice. Fenquinotrione was registered in Japan in 2018, and various products containing fenquinotrione have been launched. With its high efficacy and excellent rice selectivity, we believe that fenquinotrione will contribute to efficient food production in the future.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6c/d9/jps-47-3-J22-02.PMC9706282.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of a rice herbicide, fenquinotrione.\",\"authors\":\"Atsushi Nagamatsu,&nbsp;Ken Ueda,&nbsp;Ryuji Tamai,&nbsp;Shinki Tani,&nbsp;Shunsuke Yamamoto\",\"doi\":\"10.1584/jpestics.J22-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fenquinotrione is a novel rice herbicide that was discovered and developed by Kumiai Chemical Industry Co., Ltd. It can control a wide range of broadleaf and sedge weeds with excellent rice selectivity at 30 g a.i./10 a and is as effective as the wild type on acetolactate synthase inhibitor-resistant weeds. Our metabolic and molecular biological studies showed that CYP81A6-mediated demethylation and subsequent glucose conjugation are responsible for the safety of fenquinotrione in rice. Fenquinotrione was registered in Japan in 2018, and various products containing fenquinotrione have been launched. With its high efficacy and excellent rice selectivity, we believe that fenquinotrione will contribute to efficient food production in the future.</p>\",\"PeriodicalId\":16712,\"journal\":{\"name\":\"Journal of Pesticide Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6c/d9/jps-47-3-J22-02.PMC9706282.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pesticide Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1584/jpestics.J22-02\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pesticide Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1584/jpestics.J22-02","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

芬喹诺酮是Kumiai化学工业有限公司发现并开发的一种新型水稻除草剂。对阔叶杂草和莎草杂草有广泛的防治作用,对水稻有很好的选择性。/10 a,对抗乙酰乳酸合酶抑制剂杂草的效果与野生型相同。我们的代谢和分子生物学研究表明,cyp81a6介导的去甲基化和随后的葡萄糖偶联是芬喹诺酮在水稻中的安全性的原因。芬喹诺酮于2018年在日本注册,并推出了多种含有芬喹诺酮的产品。我们相信,芬喹诺酮具有高效的药效和优异的水稻选择性,将为未来的高效粮食生产做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a rice herbicide, fenquinotrione.

Fenquinotrione is a novel rice herbicide that was discovered and developed by Kumiai Chemical Industry Co., Ltd. It can control a wide range of broadleaf and sedge weeds with excellent rice selectivity at 30 g a.i./10 a and is as effective as the wild type on acetolactate synthase inhibitor-resistant weeds. Our metabolic and molecular biological studies showed that CYP81A6-mediated demethylation and subsequent glucose conjugation are responsible for the safety of fenquinotrione in rice. Fenquinotrione was registered in Japan in 2018, and various products containing fenquinotrione have been launched. With its high efficacy and excellent rice selectivity, we believe that fenquinotrione will contribute to efficient food production in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pesticide Science
Journal of Pesticide Science 农林科学-昆虫学
CiteScore
4.30
自引率
4.20%
发文量
28
审稿时长
18-36 weeks
期刊介绍: The Journal of Pesticide Science publishes the results of original research regarding the chemistry and biochemistry of pesticides including bio-based materials. It also covers their metabolism, toxicology, environmental fate and formulation.
期刊最新文献
Effect of pyriofenone on the infection processes and cytological features of Blumeria graminis on wheat leaves Synthesis and biological evaluation of burnettiene A derivatives enabling discovery of novel fungicide candidates. Enhanced disease resistance against Botrytis cinerea by strigolactone-mediated immune priming in Arabidopsis thaliana A reliable quantification of organophosphorus pesticides in brown rice samples for proficiency testing using Japanese official analytical method, QuEChERS, and modified QuEChERS combined with isotope dilution mass spectrometry Bacterial Pesticides: Mechanism of Action, Possibility of Food Contamination, and Residue Analysis Using MS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1