利用三倍速度编码四维血流磁共振成像测量肥厚型心肌病的湍流动能

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-01-01 Epub Date: 2022-12-13 DOI:10.2463/mrms.mp.2022-0051
Kotomi Iwata, Tetsuro Sekine, Junya Matsuda, Masaki Tachi, Yoichi Imori, Yasuo Amano, Takahiro Ando, Makoto Obara, Gerard Crelier, Masashi Ogawa, Hitoshi Takano, Shinichiro Kumita
{"title":"利用三倍速度编码四维血流磁共振成像测量肥厚型心肌病的湍流动能","authors":"Kotomi Iwata, Tetsuro Sekine, Junya Matsuda, Masaki Tachi, Yoichi Imori, Yasuo Amano, Takahiro Ando, Makoto Obara, Gerard Crelier, Masashi Ogawa, Hitoshi Takano, Shinichiro Kumita","doi":"10.2463/mrms.mp.2022-0051","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The turbulent kinetic energy (TKE) estimation based on 4D flow MRI has been currently developed and can be used to estimate the pressure gradient. The objective of this study was to validate the clinical value of 4D flow-based TKE measurement in patients with hypertrophic cardiomyopathy (HCM).</p><p><strong>Methods: </strong>From April 2018 to March 2019, we recruited 28 patients with HCM. Based on echocardiography, they were divided into obstructed HCM (HOCM) and non-obstructed HCM (HNCM). Triple-velocity encoding 4D flow MRI was performed. The volume-of-interest from the left ventricle to the aortic arch was drawn semi-automatically. We defined peak turbulent kinetic energy (TKE<sub>peak</sub>) as the highest TKE phase in all cardiac phases.</p><p><strong>Results: </strong>TKE<sub>peak</sub> was significantly higher in HOCM than in HNCM (14.83 ± 3.91 vs. 7.11 ± 3.60 mJ, P < 0.001). TKE<sub>peak</sub> was significantly higher in patients with systolic anterior movement (SAM) than in those without SAM (15.60 ± 3.96 vs. 7.44 ± 3.29 mJ, P < 0.001). Left ventricular (LV) mass increased proportionally with TKE<sub>peak</sub> (P = 0.012, r = 0.466). When only the asymptomatic patients were extracted, a stronger correlation was observed (P = 0.001, r = 0.842).</p><p><strong>Conclusion: </strong>TKE measurement based on 4D flow MRI can detect the flow alteration induced by systolic flow jet and LV outflow tract geometry, such as SAM in patients with HOCM. The elevated TKE is correlated with increasing LV mass. This indicates that increasing cardiac load, by pressure loss due to turbulence, induces progression of LV hypertrophy, which leads to a worse prognosis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"39-48"},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838723/pdf/","citationCount":"0","resultStr":"{\"title\":\"Measurement of Turbulent Kinetic Energy in Hypertrophic Cardiomyopathy Using Triple-velocity Encoding 4D Flow MR Imaging.\",\"authors\":\"Kotomi Iwata, Tetsuro Sekine, Junya Matsuda, Masaki Tachi, Yoichi Imori, Yasuo Amano, Takahiro Ando, Makoto Obara, Gerard Crelier, Masashi Ogawa, Hitoshi Takano, Shinichiro Kumita\",\"doi\":\"10.2463/mrms.mp.2022-0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The turbulent kinetic energy (TKE) estimation based on 4D flow MRI has been currently developed and can be used to estimate the pressure gradient. The objective of this study was to validate the clinical value of 4D flow-based TKE measurement in patients with hypertrophic cardiomyopathy (HCM).</p><p><strong>Methods: </strong>From April 2018 to March 2019, we recruited 28 patients with HCM. Based on echocardiography, they were divided into obstructed HCM (HOCM) and non-obstructed HCM (HNCM). Triple-velocity encoding 4D flow MRI was performed. The volume-of-interest from the left ventricle to the aortic arch was drawn semi-automatically. We defined peak turbulent kinetic energy (TKE<sub>peak</sub>) as the highest TKE phase in all cardiac phases.</p><p><strong>Results: </strong>TKE<sub>peak</sub> was significantly higher in HOCM than in HNCM (14.83 ± 3.91 vs. 7.11 ± 3.60 mJ, P < 0.001). TKE<sub>peak</sub> was significantly higher in patients with systolic anterior movement (SAM) than in those without SAM (15.60 ± 3.96 vs. 7.44 ± 3.29 mJ, P < 0.001). Left ventricular (LV) mass increased proportionally with TKE<sub>peak</sub> (P = 0.012, r = 0.466). When only the asymptomatic patients were extracted, a stronger correlation was observed (P = 0.001, r = 0.842).</p><p><strong>Conclusion: </strong>TKE measurement based on 4D flow MRI can detect the flow alteration induced by systolic flow jet and LV outflow tract geometry, such as SAM in patients with HOCM. The elevated TKE is correlated with increasing LV mass. This indicates that increasing cardiac load, by pressure loss due to turbulence, induces progression of LV hypertrophy, which leads to a worse prognosis.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"39-48\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838723/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2463/mrms.mp.2022-0051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2463/mrms.mp.2022-0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

目的:目前已开发出基于四维流磁共振成像的湍流动能(TKE)估算方法,可用于估算压力梯度。本研究旨在验证基于 4D 流量的 TKE 测量在肥厚型心肌病(HCM)患者中的临床价值:从 2018 年 4 月到 2019 年 3 月,我们招募了 28 名 HCM 患者。根据超声心动图,他们被分为梗阻型 HCM(HOCM)和非梗阻型 HCM(HNCM)。进行了三重速度编码 4D 血流磁共振成像。半自动绘制了从左心室到主动脉弓的感兴趣容积。我们将湍流动能峰值(TKEpeak)定义为所有心相中最高的 TKE 相位:HOCM 的 TKEpeak 明显高于 HNCM(14.83 ± 3.91 vs. 7.11 ± 3.60 mJ,P < 0.001)。收缩期前移 (SAM) 患者的 TKEpeak 明显高于无 SAM 患者(15.60 ± 3.96 vs. 7.44 ± 3.29 mJ,P < 0.001)。左心室(LV)质量与 TKE 峰成正比增加(P = 0.012,r = 0.466)。当仅提取无症状患者时,观察到更强的相关性(P = 0.001,r = 0.842):结论:基于四维血流磁共振成像的TKE测量可检测出HOCM患者由收缩期血流喷射和左心室流出道几何形状(如SAM)引起的血流改变。TKE 的升高与左心室质量的增加相关。这表明,湍流造成的压力损失会增加心脏负荷,诱发左心室肥厚,从而导致预后恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurement of Turbulent Kinetic Energy in Hypertrophic Cardiomyopathy Using Triple-velocity Encoding 4D Flow MR Imaging.

Purpose: The turbulent kinetic energy (TKE) estimation based on 4D flow MRI has been currently developed and can be used to estimate the pressure gradient. The objective of this study was to validate the clinical value of 4D flow-based TKE measurement in patients with hypertrophic cardiomyopathy (HCM).

Methods: From April 2018 to March 2019, we recruited 28 patients with HCM. Based on echocardiography, they were divided into obstructed HCM (HOCM) and non-obstructed HCM (HNCM). Triple-velocity encoding 4D flow MRI was performed. The volume-of-interest from the left ventricle to the aortic arch was drawn semi-automatically. We defined peak turbulent kinetic energy (TKEpeak) as the highest TKE phase in all cardiac phases.

Results: TKEpeak was significantly higher in HOCM than in HNCM (14.83 ± 3.91 vs. 7.11 ± 3.60 mJ, P < 0.001). TKEpeak was significantly higher in patients with systolic anterior movement (SAM) than in those without SAM (15.60 ± 3.96 vs. 7.44 ± 3.29 mJ, P < 0.001). Left ventricular (LV) mass increased proportionally with TKEpeak (P = 0.012, r = 0.466). When only the asymptomatic patients were extracted, a stronger correlation was observed (P = 0.001, r = 0.842).

Conclusion: TKE measurement based on 4D flow MRI can detect the flow alteration induced by systolic flow jet and LV outflow tract geometry, such as SAM in patients with HOCM. The elevated TKE is correlated with increasing LV mass. This indicates that increasing cardiac load, by pressure loss due to turbulence, induces progression of LV hypertrophy, which leads to a worse prognosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1