{"title":"水蒸气吸附对直链淀粉-月桂酸混合粉中络合物形成的影响。","authors":"Yuki Yoshitomi, Kiyoshi Kawai","doi":"10.5458/jag.jag.JAG-2023_0001","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to understand the effect of relative humidity (RH) on amylose-lipid complex (ALC) formation in amylose-lauric acid blend powder held at 50 °C (temperature slightly higher than the melting point of lauric acid) using differential scanning calorimetry (DSC) and X-ray diffraction. From DSC curves, the melting of crystalized lauric acid and two melting peaks of ALC were observed depending on RH. ALC formation was confirmed by X-ray diffraction pattern. The melting enthalpy (∆<i>H</i><sub>m</sub>) of lauric acid in the sample held at RH 0 % was lower than that of lauric acid only though there was no ALC formation. This suggests that crystallization of lauric acid was prevented by amylose. The ∆<i>H</i><sub>m</sub> of lauric acid increased with an increase in RH up to 79.0 % because liquid lauric acid would have fused as the result of enhanced repulsive force between liquid lauric acid and hydrated amylose. The ∆<i>H</i><sub>m</sub> of ALC increased with an increase in RH between 79.0 and 95.0 %. For ALC formation, amylose has to be mobile in the system, but dehydrated amylose is in a glassy (immobilize) state. According to the glass to rubber transition behavior of amorphous polymer, amylose held at 50 °C is suggested to become rubbery (mobile) state at RH 76.0 %. This interpretation will explain the reason why ALC formation began to be observed at the RH range between 72.4 and 79.0 %.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/65/a9/70_jag.JAG-2023_0001.PMC10432376.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of Water Vapor Sorption on Complex Formation in Amylose-lauric Acid Blend Powder.\",\"authors\":\"Yuki Yoshitomi, Kiyoshi Kawai\",\"doi\":\"10.5458/jag.jag.JAG-2023_0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to understand the effect of relative humidity (RH) on amylose-lipid complex (ALC) formation in amylose-lauric acid blend powder held at 50 °C (temperature slightly higher than the melting point of lauric acid) using differential scanning calorimetry (DSC) and X-ray diffraction. From DSC curves, the melting of crystalized lauric acid and two melting peaks of ALC were observed depending on RH. ALC formation was confirmed by X-ray diffraction pattern. The melting enthalpy (∆<i>H</i><sub>m</sub>) of lauric acid in the sample held at RH 0 % was lower than that of lauric acid only though there was no ALC formation. This suggests that crystallization of lauric acid was prevented by amylose. The ∆<i>H</i><sub>m</sub> of lauric acid increased with an increase in RH up to 79.0 % because liquid lauric acid would have fused as the result of enhanced repulsive force between liquid lauric acid and hydrated amylose. The ∆<i>H</i><sub>m</sub> of ALC increased with an increase in RH between 79.0 and 95.0 %. For ALC formation, amylose has to be mobile in the system, but dehydrated amylose is in a glassy (immobilize) state. According to the glass to rubber transition behavior of amorphous polymer, amylose held at 50 °C is suggested to become rubbery (mobile) state at RH 76.0 %. This interpretation will explain the reason why ALC formation began to be observed at the RH range between 72.4 and 79.0 %.</p>\",\"PeriodicalId\":14999,\"journal\":{\"name\":\"Journal of applied glycoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/65/a9/70_jag.JAG-2023_0001.PMC10432376.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied glycoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5458/jag.jag.JAG-2023_0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2023_0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of Water Vapor Sorption on Complex Formation in Amylose-lauric Acid Blend Powder.
The purpose of this study was to understand the effect of relative humidity (RH) on amylose-lipid complex (ALC) formation in amylose-lauric acid blend powder held at 50 °C (temperature slightly higher than the melting point of lauric acid) using differential scanning calorimetry (DSC) and X-ray diffraction. From DSC curves, the melting of crystalized lauric acid and two melting peaks of ALC were observed depending on RH. ALC formation was confirmed by X-ray diffraction pattern. The melting enthalpy (∆Hm) of lauric acid in the sample held at RH 0 % was lower than that of lauric acid only though there was no ALC formation. This suggests that crystallization of lauric acid was prevented by amylose. The ∆Hm of lauric acid increased with an increase in RH up to 79.0 % because liquid lauric acid would have fused as the result of enhanced repulsive force between liquid lauric acid and hydrated amylose. The ∆Hm of ALC increased with an increase in RH between 79.0 and 95.0 %. For ALC formation, amylose has to be mobile in the system, but dehydrated amylose is in a glassy (immobilize) state. According to the glass to rubber transition behavior of amorphous polymer, amylose held at 50 °C is suggested to become rubbery (mobile) state at RH 76.0 %. This interpretation will explain the reason why ALC formation began to be observed at the RH range between 72.4 and 79.0 %.