翻译DNA合成聚合酶对基因组稳定性和人类健康的影响。

IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular and Cellular Biology Pub Date : 2023-01-01 Epub Date: 2023-07-13 DOI:10.1080/10985549.2023.2224199
Jegadheeswari Venkadakrishnan, Ganesh Lahane, Arti Dhar, Wei Xiao, Krishna Moorthi Bhat, Tej K Pandita, Audesh Bhat
{"title":"翻译DNA合成聚合酶对基因组稳定性和人类健康的影响。","authors":"Jegadheeswari Venkadakrishnan, Ganesh Lahane, Arti Dhar, Wei Xiao, Krishna Moorthi Bhat, Tej K Pandita, Audesh Bhat","doi":"10.1080/10985549.2023.2224199","DOIUrl":null,"url":null,"abstract":"<p><p>Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448981/pdf/","citationCount":"0","resultStr":"{\"title\":\"Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health.\",\"authors\":\"Jegadheeswari Venkadakrishnan, Ganesh Lahane, Arti Dhar, Wei Xiao, Krishna Moorthi Bhat, Tej K Pandita, Audesh Bhat\",\"doi\":\"10.1080/10985549.2023.2224199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.</p>\",\"PeriodicalId\":18658,\"journal\":{\"name\":\"Molecular and Cellular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448981/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10985549.2023.2224199\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2023.2224199","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于存在一种特殊机制,通常被称为DNA损伤耐受性(DDT),由损伤引起的复制叉阻滞诱导的DNA双链断裂(DSBs)在细胞中被有效抑制。在真核细胞中,DDT是通过一组被称为TLS聚合酶的DNA聚合酶进行的跨病变DNA合成(TLS)来促进的。另一种平行机制,称为同源定向DDT,是无错误的,涉及模板转换或叉反转。滴滴涕途径的重要性已得到充分证实。一些疾病被归因于TLS途径的缺陷,这些缺陷要么是由TLS聚合酶基因突变引起的,要么是由调节失调引起的。在复制叉遇到DNA损伤的情况下,细胞从高保真度复制聚合酶转变为低保真度TLS聚合酶,这与包括癌症在内的多种人类疾病相关的基因组不稳定性有关。TLS聚合酶在化疗耐药性中的作用近年来得到了认可。除了它们在DDT途径中的作用外,了解TLS聚合酶的非经典功能也是揭示它们在维持基因组稳定性方面的重要性的关键。在此,我们总结了目前对滴滴涕TLS途径的理解及其对人类健康的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health.

Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Biology
Molecular and Cellular Biology 生物-生化与分子生物学
CiteScore
9.80
自引率
1.90%
发文量
120
审稿时长
1 months
期刊介绍: Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.
期刊最新文献
The Ashkenazi-Centric G334R Variant of TP53 is Severely Impaired for Transactivation but Retains Tumor Suppressor Function in a Mouse Model. A Genome Wide CRISPR Screen Reveals That HOXA9 Promotes Enzalutamide Resistance in Prostate Cancer. Midnolin, a Genetic Risk Factor for Parkinson’s Disease, Promotes Neurite Outgrowth Accompanied by Early Growth Response 1 Activation in PC12 Cells Staufen1 Represses the FOXA1-Regulated Transcriptome by Destabilizing FOXA1 mRNA in Colorectal Cancer Cells. ANP32e Binds Histone H2A.Z in a Cell Cycle-Dependent Manner and Regulates Its Protein Stability in the Cytoplasm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1