模拟在线代理的服从性、可塑性和影响力的演变。

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Life Pub Date : 2023-11-01 DOI:10.1162/artl_a_00413
Keith L. Downing
{"title":"模拟在线代理的服从性、可塑性和影响力的演变。","authors":"Keith L. Downing","doi":"10.1162/artl_a_00413","DOIUrl":null,"url":null,"abstract":"The prevalence of artificial intelligence (AI) tools that filter the information given to internet users, such as recommender systems and diverse personalizers, may be creating troubling long-term side effects to the obvious short-term conveniences. Many worry that these automated influencers can subtly and unwittingly nudge individuals toward conformity, thereby (somewhat paradoxically) restricting the choices of each agent and/or the population as a whole. In its various guises, this problem has labels such as filter bubble, echo chamber, and personalization polarization. One key danger of diversity reduction is that it plays into the hands of a cadre of self-interested online actors who can leverage conformity to more easily predict and then control users’ sentiments and behaviors, often in the direction of increased conformity and even greater ease of control. This emerging positive feedback loop and the compliance that fuels it are the focal points of this article, which presents several simple, abstract, agent-based models of both peer-to-peer and AI-to-user influence. One of these AI systems functions as a collaborative filter, whereas the other represents an actor the influential power of which derives directly from its ability to predict user behavior. Many versions of the model, with assorted parameter settings, display emergent polarization or universal convergence, but collaborative filtering exerts a weaker homogenizing force than expected. In addition, the combination of basic agents and a self-interested AI predictor yields an emergent positive feedback that can drive the agent population to complete conformity.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 4","pages":"394-420"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Evolution of Conformity, Malleability, and Influence in Simulated Online Agents\",\"authors\":\"Keith L. Downing\",\"doi\":\"10.1162/artl_a_00413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prevalence of artificial intelligence (AI) tools that filter the information given to internet users, such as recommender systems and diverse personalizers, may be creating troubling long-term side effects to the obvious short-term conveniences. Many worry that these automated influencers can subtly and unwittingly nudge individuals toward conformity, thereby (somewhat paradoxically) restricting the choices of each agent and/or the population as a whole. In its various guises, this problem has labels such as filter bubble, echo chamber, and personalization polarization. One key danger of diversity reduction is that it plays into the hands of a cadre of self-interested online actors who can leverage conformity to more easily predict and then control users’ sentiments and behaviors, often in the direction of increased conformity and even greater ease of control. This emerging positive feedback loop and the compliance that fuels it are the focal points of this article, which presents several simple, abstract, agent-based models of both peer-to-peer and AI-to-user influence. One of these AI systems functions as a collaborative filter, whereas the other represents an actor the influential power of which derives directly from its ability to predict user behavior. Many versions of the model, with assorted parameter settings, display emergent polarization or universal convergence, but collaborative filtering exerts a weaker homogenizing force than expected. In addition, the combination of basic agents and a self-interested AI predictor yields an emergent positive feedback that can drive the agent population to complete conformity.\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\"29 4\",\"pages\":\"394-420\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10508341/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10508341/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)工具(如推荐系统和各种个性化工具)可以过滤互联网用户所获得的信息,它们的盛行可能会在明显的短期便利之外带来令人担忧的长期副作用。许多人担心,这些自动化的影响者会在不知不觉中巧妙地引导个人趋同,从而(有点自相矛盾地)限制了每个人和/或整个群体的选择。这个问题有多种表现形式,如过滤泡沫、回声室和个性化极化等。减少多样性的一个主要危险是,它正中了一些自利的网络行为者的下怀,这些行为者可以利用顺应性更容易地预测和控制用户的情绪和行为,其方向往往是增加顺应性和更容易控制。这种新出现的正反馈循环以及对其起到推波助澜作用的顺应性是本文的重点,本文介绍了几种简单、抽象、基于代理的点对点模型和人工智能对用户的影响模型。其中一个人工智能系统发挥着协同过滤器的作用,而另一个则代表着一个行动者,其影响力直接来源于预测用户行为的能力。在各种参数设置下,该模型的许多版本都显示出两极分化或普遍趋同的现象,但协同过滤所产生的同质化力量比预期的要弱。此外,基本代理与自利的人工智能预测器相结合,会产生一种新出现的正反馈,能促使代理群体完全一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Evolution of Conformity, Malleability, and Influence in Simulated Online Agents
The prevalence of artificial intelligence (AI) tools that filter the information given to internet users, such as recommender systems and diverse personalizers, may be creating troubling long-term side effects to the obvious short-term conveniences. Many worry that these automated influencers can subtly and unwittingly nudge individuals toward conformity, thereby (somewhat paradoxically) restricting the choices of each agent and/or the population as a whole. In its various guises, this problem has labels such as filter bubble, echo chamber, and personalization polarization. One key danger of diversity reduction is that it plays into the hands of a cadre of self-interested online actors who can leverage conformity to more easily predict and then control users’ sentiments and behaviors, often in the direction of increased conformity and even greater ease of control. This emerging positive feedback loop and the compliance that fuels it are the focal points of this article, which presents several simple, abstract, agent-based models of both peer-to-peer and AI-to-user influence. One of these AI systems functions as a collaborative filter, whereas the other represents an actor the influential power of which derives directly from its ability to predict user behavior. Many versions of the model, with assorted parameter settings, display emergent polarization or universal convergence, but collaborative filtering exerts a weaker homogenizing force than expected. In addition, the combination of basic agents and a self-interested AI predictor yields an emergent positive feedback that can drive the agent population to complete conformity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
期刊最新文献
Complexity, Artificial Life, and Artificial Intelligence. Neurons as Autoencoders. Evolvability in Artificial Development of Large, Complex Structures and the Principle of Terminal Addition. Investigating the Limits of Familiarity-Based Navigation. Network Bottlenecks and Task Structure Control the Evolution of Interpretable Learning Rules in a Foraging Agent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1