空中施用农药溶液在植物表面的宿命机理模型。

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY SAR and QSAR in Environmental Research Pub Date : 2022-12-01 DOI:10.1080/1062936X.2022.2148738
Z Li, H Wang, S Xiao
{"title":"空中施用农药溶液在植物表面的宿命机理模型。","authors":"Z Li,&nbsp;H Wang,&nbsp;S Xiao","doi":"10.1080/1062936X.2022.2148738","DOIUrl":null,"url":null,"abstract":"<p><p>Pesticide residues on plant surfaces are a primary source of pesticide bioaccumulation in crops. In this context, we propose a mechanism-based model for understanding the pesticide fate on the plant surface following aerial application, taking into account fate modelling of the pesticide spray solution on the plant surface. Using chlorothalonil as an example, the simulation results revealed that the spray solution dissipated rapidly after aerial application, resulting in the formation of a saturated pesticide solution, which facilitated the diffusion process of the pesticide residue from the plant surface into the peel tissue. The proposed model generated higher simulated residue concentrations in the peel or pulp than the current model, owing to the proposed model's assumption of rapid dissipation of the spray solution. This indicated that the proposed model specified the influence of the spray solution on the plant's exposure to residues via the surface deposition pathway, whereas the current modelling approach presented a generic estimate of the residue dissipation on the plant surface that linked to the residue's fate in the soil.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A mechanism-based fate model of pesticide solutions on the plant surface under aerial application.\",\"authors\":\"Z Li,&nbsp;H Wang,&nbsp;S Xiao\",\"doi\":\"10.1080/1062936X.2022.2148738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pesticide residues on plant surfaces are a primary source of pesticide bioaccumulation in crops. In this context, we propose a mechanism-based model for understanding the pesticide fate on the plant surface following aerial application, taking into account fate modelling of the pesticide spray solution on the plant surface. Using chlorothalonil as an example, the simulation results revealed that the spray solution dissipated rapidly after aerial application, resulting in the formation of a saturated pesticide solution, which facilitated the diffusion process of the pesticide residue from the plant surface into the peel tissue. The proposed model generated higher simulated residue concentrations in the peel or pulp than the current model, owing to the proposed model's assumption of rapid dissipation of the spray solution. This indicated that the proposed model specified the influence of the spray solution on the plant's exposure to residues via the surface deposition pathway, whereas the current modelling approach presented a generic estimate of the residue dissipation on the plant surface that linked to the residue's fate in the soil.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2022.2148738\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2022.2148738","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

植物表面农药残留是农药在作物体内生物积累的主要来源。在这种情况下,我们提出了一个基于机制的模型来理解农药在植物表面施用后的命运,考虑到农药喷洒溶液在植物表面的命运模型。以百菌清为例,仿真结果表明,喷施后喷雾溶液耗散迅速,形成饱和的农药溶液,有利于农药残留从植物表面向果皮组织扩散。由于所提出的模型假设喷雾溶液的快速耗散,因此所提出的模型在果皮或纸浆中产生的模拟残留物浓度比现有模型高。这表明,所提出的模型指定了喷雾溶液通过表面沉积途径对植物暴露于残留物的影响,而目前的建模方法提出了与残留物在土壤中的命运相关的植物表面残留物耗散的一般估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mechanism-based fate model of pesticide solutions on the plant surface under aerial application.

Pesticide residues on plant surfaces are a primary source of pesticide bioaccumulation in crops. In this context, we propose a mechanism-based model for understanding the pesticide fate on the plant surface following aerial application, taking into account fate modelling of the pesticide spray solution on the plant surface. Using chlorothalonil as an example, the simulation results revealed that the spray solution dissipated rapidly after aerial application, resulting in the formation of a saturated pesticide solution, which facilitated the diffusion process of the pesticide residue from the plant surface into the peel tissue. The proposed model generated higher simulated residue concentrations in the peel or pulp than the current model, owing to the proposed model's assumption of rapid dissipation of the spray solution. This indicated that the proposed model specified the influence of the spray solution on the plant's exposure to residues via the surface deposition pathway, whereas the current modelling approach presented a generic estimate of the residue dissipation on the plant surface that linked to the residue's fate in the soil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
期刊最新文献
QSAR modelling of enzyme inhibition toxicity of ionic liquid based on chaotic spotted hyena optimization algorithm. Pinpointing prime structural attributes of potential MMP-2 inhibitors comprising alkyl/arylsulfonyl pyrrolidine scaffold: a ligand-based molecular modelling approach validated by molecular dynamics simulation analysis. Predicting repurposed drugs targeting the NS3 protease of dengue virus using machine learning-based QSAR, molecular docking, and molecular dynamics simulations. Quantitative structure-insecticidal activity of essential oils on the human head louse (Pediculus humanus capitis). Robustaflavone as a novel scaffold for inhibitors of native and auto-proteolysed human neutrophil elastase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1