{"title":"中等嗜热嗜酸性细菌将硫化氢生物氧化成硫。","authors":"R. Romero, P. Viedma, D. Cotoras","doi":"10.1007/s10532-023-10049-y","DOIUrl":null,"url":null,"abstract":"<div><p>The copper industry utilizes significant amounts of sulfuric acid in its processes, generating sulfate as waste. While sulfate-reducing bacteria can remove sulfate, it produces hydrogen sulfide (H<sub>2</sub>S) as a byproduct. This study examined the capability of a consortium consisting of <i>Sulfobacillus thermosulfidooxidans</i> and <i>Sulfobacillus acidophilus</i> to partially oxidize H<sub>2</sub>S to S° at a temperature of 45 °C. A fixed-bed bioreactor, with glass rings as support material and sodium thiosulfate as a model electron donor, was inoculated with the consortium. Formation of biofilms was crucial to maintain the bioreactor’s steady state, despite high flow rates. Afterward, the electron donor was changed to H<sub>2</sub>S. When the bioreactor was operated continuously and with high aeration, H<sub>2</sub>S was fully oxidized to SO<sub>4</sub><sup>2−</sup>. However, under conditions of low aeration and at a concentration of 0.26 g/L of H<sub>2</sub>S, the consortium was able to oxidize H<sub>2</sub>S to S° with a 13% yield. S° was discovered attached to the glass rings and jarosite. The results indicate that the consortium could oxidize H<sub>2</sub>S to S° with a 13% yield under low aeration and at a concentration of 0.26 g/L of H<sub>2</sub>S. The findings highlight the capability of a <i>Sulfobacillus</i> consortium to convert H<sub>2</sub>S into S°, providing a potential solution for addressing environmental and safety issues associated with sulfate waste generated by the mining industry.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biooxidation of hydrogen sulfide to sulfur by moderate thermophilic acidophilic bacteria\",\"authors\":\"R. Romero, P. Viedma, D. Cotoras\",\"doi\":\"10.1007/s10532-023-10049-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The copper industry utilizes significant amounts of sulfuric acid in its processes, generating sulfate as waste. While sulfate-reducing bacteria can remove sulfate, it produces hydrogen sulfide (H<sub>2</sub>S) as a byproduct. This study examined the capability of a consortium consisting of <i>Sulfobacillus thermosulfidooxidans</i> and <i>Sulfobacillus acidophilus</i> to partially oxidize H<sub>2</sub>S to S° at a temperature of 45 °C. A fixed-bed bioreactor, with glass rings as support material and sodium thiosulfate as a model electron donor, was inoculated with the consortium. Formation of biofilms was crucial to maintain the bioreactor’s steady state, despite high flow rates. Afterward, the electron donor was changed to H<sub>2</sub>S. When the bioreactor was operated continuously and with high aeration, H<sub>2</sub>S was fully oxidized to SO<sub>4</sub><sup>2−</sup>. However, under conditions of low aeration and at a concentration of 0.26 g/L of H<sub>2</sub>S, the consortium was able to oxidize H<sub>2</sub>S to S° with a 13% yield. S° was discovered attached to the glass rings and jarosite. The results indicate that the consortium could oxidize H<sub>2</sub>S to S° with a 13% yield under low aeration and at a concentration of 0.26 g/L of H<sub>2</sub>S. The findings highlight the capability of a <i>Sulfobacillus</i> consortium to convert H<sub>2</sub>S into S°, providing a potential solution for addressing environmental and safety issues associated with sulfate waste generated by the mining industry.</p></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-023-10049-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10049-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biooxidation of hydrogen sulfide to sulfur by moderate thermophilic acidophilic bacteria
The copper industry utilizes significant amounts of sulfuric acid in its processes, generating sulfate as waste. While sulfate-reducing bacteria can remove sulfate, it produces hydrogen sulfide (H2S) as a byproduct. This study examined the capability of a consortium consisting of Sulfobacillus thermosulfidooxidans and Sulfobacillus acidophilus to partially oxidize H2S to S° at a temperature of 45 °C. A fixed-bed bioreactor, with glass rings as support material and sodium thiosulfate as a model electron donor, was inoculated with the consortium. Formation of biofilms was crucial to maintain the bioreactor’s steady state, despite high flow rates. Afterward, the electron donor was changed to H2S. When the bioreactor was operated continuously and with high aeration, H2S was fully oxidized to SO42−. However, under conditions of low aeration and at a concentration of 0.26 g/L of H2S, the consortium was able to oxidize H2S to S° with a 13% yield. S° was discovered attached to the glass rings and jarosite. The results indicate that the consortium could oxidize H2S to S° with a 13% yield under low aeration and at a concentration of 0.26 g/L of H2S. The findings highlight the capability of a Sulfobacillus consortium to convert H2S into S°, providing a potential solution for addressing environmental and safety issues associated with sulfate waste generated by the mining industry.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.