Sue Ann Mah, Peng Du, Recep Avci, Jean-Marie Vanderwinden, Leo K Cheng
{"title":"利用共聚焦成像和机器学习方法分析小鼠胃远端Cajal间质细胞的区域变化。","authors":"Sue Ann Mah, Peng Du, Recep Avci, Jean-Marie Vanderwinden, Leo K Cheng","doi":"10.1007/s12195-021-00716-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The network of Interstitial Cells of Cajal (ICC) plays a plethora of key roles in maintaining, coordinating, and regulating the contractions of the gastrointestinal (GI) smooth muscles. Several GI functional motility disorders have been associated with ICC degradation. This study extended a previously reported 2D morphological analysis and applied it to 3D spatial quantification of three different types of ICC networks in the distal stomach guided by confocal imaging and machine learning methods. The characterization of the complex changes in spatial structure of the ICC network architecture contributes to our understanding of the roles that different types of ICC may play in post-prandial physiology, pathogenesis, and/or amelioration of GI dsymotility- bridging structure and function.</p><p><strong>Methods: </strong>A validated classification method using Trainable Weka Segmentation was applied to segment the ICC from a confocal dataset of the gastric antrum of a transgenic mouse, followed by structural analysis of the segmented images.</p><p><strong>Results: </strong>The machine learning model performance was compared to manually segmented subfields, achieving an area under the receiver-operating characteristic (AUROC) of 0.973 and 0.995 for myenteric ICC (ICC-MP; <i>n </i>= 6) and intramuscular ICC (ICC-IM; <i>n </i>= 17). The myenteric layer in the distal antrum increased in thickness (from 14.5 to 34 <i>μ</i>m) towards the lesser curvature, whereas the thickness decreased towards the lesser curvature in the proximal antrum (17.7 to 9 <i>μ</i>m). There was an increase in ICC-MP volume from proximal to distal antrum (406,960 ± 140,040 vs. 559,990 ± 281,000 <i>μ</i>m<sup>3</sup>; <i>p </i>= 0.000145). The % of ICC volume was similar for ICC-LM and for ICC-CM between proximal (3.6 ± 2.3% vs. 3.1 ± 1.2%; <i>p </i>= 0.185) and distal antrum (3.2 ± 3.9% vs. 2.5 ± 2.8%; <i>p</i> = 0.309). The average % volume of ICC-MP was significantly higher than ICC-IM at all points throughout sample (<i>p </i>< 0.0001).</p><p><strong>Conclusions: </strong>The segmentation and analysis methods provide a high-throughput framework of investigating the structural changes in extended ICC networks and their associated physiological functions in animal models.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938532/pdf/12195_2021_Article_716.pdf","citationCount":"5","resultStr":"{\"title\":\"Analysis of Regional Variations of the Interstitial Cells of Cajal in the Murine Distal Stomach Informed by Confocal Imaging and Machine Learning Methods.\",\"authors\":\"Sue Ann Mah, Peng Du, Recep Avci, Jean-Marie Vanderwinden, Leo K Cheng\",\"doi\":\"10.1007/s12195-021-00716-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The network of Interstitial Cells of Cajal (ICC) plays a plethora of key roles in maintaining, coordinating, and regulating the contractions of the gastrointestinal (GI) smooth muscles. Several GI functional motility disorders have been associated with ICC degradation. This study extended a previously reported 2D morphological analysis and applied it to 3D spatial quantification of three different types of ICC networks in the distal stomach guided by confocal imaging and machine learning methods. The characterization of the complex changes in spatial structure of the ICC network architecture contributes to our understanding of the roles that different types of ICC may play in post-prandial physiology, pathogenesis, and/or amelioration of GI dsymotility- bridging structure and function.</p><p><strong>Methods: </strong>A validated classification method using Trainable Weka Segmentation was applied to segment the ICC from a confocal dataset of the gastric antrum of a transgenic mouse, followed by structural analysis of the segmented images.</p><p><strong>Results: </strong>The machine learning model performance was compared to manually segmented subfields, achieving an area under the receiver-operating characteristic (AUROC) of 0.973 and 0.995 for myenteric ICC (ICC-MP; <i>n </i>= 6) and intramuscular ICC (ICC-IM; <i>n </i>= 17). The myenteric layer in the distal antrum increased in thickness (from 14.5 to 34 <i>μ</i>m) towards the lesser curvature, whereas the thickness decreased towards the lesser curvature in the proximal antrum (17.7 to 9 <i>μ</i>m). There was an increase in ICC-MP volume from proximal to distal antrum (406,960 ± 140,040 vs. 559,990 ± 281,000 <i>μ</i>m<sup>3</sup>; <i>p </i>= 0.000145). The % of ICC volume was similar for ICC-LM and for ICC-CM between proximal (3.6 ± 2.3% vs. 3.1 ± 1.2%; <i>p </i>= 0.185) and distal antrum (3.2 ± 3.9% vs. 2.5 ± 2.8%; <i>p</i> = 0.309). The average % volume of ICC-MP was significantly higher than ICC-IM at all points throughout sample (<i>p </i>< 0.0001).</p><p><strong>Conclusions: </strong>The segmentation and analysis methods provide a high-throughput framework of investigating the structural changes in extended ICC networks and their associated physiological functions in animal models.</p>\",\"PeriodicalId\":9687,\"journal\":{\"name\":\"Cellular and molecular bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938532/pdf/12195_2021_Article_716.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and molecular bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12195-021-00716-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-021-00716-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Analysis of Regional Variations of the Interstitial Cells of Cajal in the Murine Distal Stomach Informed by Confocal Imaging and Machine Learning Methods.
Introduction: The network of Interstitial Cells of Cajal (ICC) plays a plethora of key roles in maintaining, coordinating, and regulating the contractions of the gastrointestinal (GI) smooth muscles. Several GI functional motility disorders have been associated with ICC degradation. This study extended a previously reported 2D morphological analysis and applied it to 3D spatial quantification of three different types of ICC networks in the distal stomach guided by confocal imaging and machine learning methods. The characterization of the complex changes in spatial structure of the ICC network architecture contributes to our understanding of the roles that different types of ICC may play in post-prandial physiology, pathogenesis, and/or amelioration of GI dsymotility- bridging structure and function.
Methods: A validated classification method using Trainable Weka Segmentation was applied to segment the ICC from a confocal dataset of the gastric antrum of a transgenic mouse, followed by structural analysis of the segmented images.
Results: The machine learning model performance was compared to manually segmented subfields, achieving an area under the receiver-operating characteristic (AUROC) of 0.973 and 0.995 for myenteric ICC (ICC-MP; n = 6) and intramuscular ICC (ICC-IM; n = 17). The myenteric layer in the distal antrum increased in thickness (from 14.5 to 34 μm) towards the lesser curvature, whereas the thickness decreased towards the lesser curvature in the proximal antrum (17.7 to 9 μm). There was an increase in ICC-MP volume from proximal to distal antrum (406,960 ± 140,040 vs. 559,990 ± 281,000 μm3; p = 0.000145). The % of ICC volume was similar for ICC-LM and for ICC-CM between proximal (3.6 ± 2.3% vs. 3.1 ± 1.2%; p = 0.185) and distal antrum (3.2 ± 3.9% vs. 2.5 ± 2.8%; p = 0.309). The average % volume of ICC-MP was significantly higher than ICC-IM at all points throughout sample (p < 0.0001).
Conclusions: The segmentation and analysis methods provide a high-throughput framework of investigating the structural changes in extended ICC networks and their associated physiological functions in animal models.
期刊介绍:
The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas:
Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example.
Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions.
Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress.
Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.