基于智能体的粗粒度模型优化——以微生物生态学为例

Sherli Koshy-Chenthittayil, Pedro Mendes, Reinhard Laubenbacher
{"title":"基于智能体的粗粒度模型优化——以微生物生态学为例","authors":"Sherli Koshy-Chenthittayil,&nbsp;Pedro Mendes,&nbsp;Reinhard Laubenbacher","doi":"10.30707/LiB8.1.1647878866.083342","DOIUrl":null,"url":null,"abstract":"<p><p>Optimization and control are important objectives across biology and biomedicine, and mathematical models are a key enabling technology. This paper reports a computational study of model-based multi-objective optimization in the setting of microbial ecology, using agent-based models. This modeling framework is well-suited to the field, but is not amenable to standard control-theoretic approaches. Furthermore, due to computational complexity, simulation-based optimization approaches are often challenging to implement. This paper presents the results of an approach that combines control-dependent coarse-graining with Pareto optimization, applied to two models of multi-species bacterial biofilms. It shows that this approach can be successful for models whose computational complexity prevents effective simulation-based optimization.</p>","PeriodicalId":37222,"journal":{"name":"Letters in Biomathematics","volume":"8 1","pages":"167-178"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802647/pdf/nihms-1856101.pdf","citationCount":"2","resultStr":"{\"title\":\"Optimization of Agent-Based Models Through Coarse-Graining: A Case Study in Microbial Ecology.\",\"authors\":\"Sherli Koshy-Chenthittayil,&nbsp;Pedro Mendes,&nbsp;Reinhard Laubenbacher\",\"doi\":\"10.30707/LiB8.1.1647878866.083342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optimization and control are important objectives across biology and biomedicine, and mathematical models are a key enabling technology. This paper reports a computational study of model-based multi-objective optimization in the setting of microbial ecology, using agent-based models. This modeling framework is well-suited to the field, but is not amenable to standard control-theoretic approaches. Furthermore, due to computational complexity, simulation-based optimization approaches are often challenging to implement. This paper presents the results of an approach that combines control-dependent coarse-graining with Pareto optimization, applied to two models of multi-species bacterial biofilms. It shows that this approach can be successful for models whose computational complexity prevents effective simulation-based optimization.</p>\",\"PeriodicalId\":37222,\"journal\":{\"name\":\"Letters in Biomathematics\",\"volume\":\"8 1\",\"pages\":\"167-178\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802647/pdf/nihms-1856101.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Biomathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30707/LiB8.1.1647878866.083342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Biomathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30707/LiB8.1.1647878866.083342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

优化和控制是生物学和生物医学领域的重要目标,而数学模型是关键的使能技术。本文报道了一种基于智能体模型的微生物生态环境下基于模型的多目标优化计算研究。该建模框架非常适合该领域,但不适合标准的控制理论方法。此外,由于计算复杂性,基于仿真的优化方法通常具有挑战性。本文提出了一种将控制依赖的粗粒度与Pareto优化相结合的方法,应用于两种多物种细菌生物膜模型。结果表明,该方法可以成功地解决由于计算复杂性而无法进行有效仿真优化的模型问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Agent-Based Models Through Coarse-Graining: A Case Study in Microbial Ecology.

Optimization and control are important objectives across biology and biomedicine, and mathematical models are a key enabling technology. This paper reports a computational study of model-based multi-objective optimization in the setting of microbial ecology, using agent-based models. This modeling framework is well-suited to the field, but is not amenable to standard control-theoretic approaches. Furthermore, due to computational complexity, simulation-based optimization approaches are often challenging to implement. This paper presents the results of an approach that combines control-dependent coarse-graining with Pareto optimization, applied to two models of multi-species bacterial biofilms. It shows that this approach can be successful for models whose computational complexity prevents effective simulation-based optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Biomathematics
Letters in Biomathematics Mathematics-Statistics and Probability
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
GillesPy2: A Biochemical Modeling Framework for Simulation Driven Biological Discovery. Welcome to Volume 10 Modeling Seasonal Malaria Transmission: A Methodology Connecting Regional Temperatures to Mosquito and Parasite Developmental Traits Mathematical Analysis and Parameter Estimation of a Two-Patch Zika Model Modeling Assumptions, Mathematical Analysis and Mitigation Through Intervention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1