Hao Su, Cheng-Ju Tian, Ying Wang, Jiaojiao Shi, Xiaoxiao Chen, Zhong Zhen, Yu Bai, Lan Deng, Chunpeng Feng, Zhuang Ma, Jinfeng Liu
{"title":"人参皂苷Rb1减轻链脲佐菌素诱导的糖尿病大鼠的氧化/羰基应激损伤,改善肺部炎症。","authors":"Hao Su, Cheng-Ju Tian, Ying Wang, Jiaojiao Shi, Xiaoxiao Chen, Zhong Zhen, Yu Bai, Lan Deng, Chunpeng Feng, Zhuang Ma, Jinfeng Liu","doi":"10.1080/13880209.2022.2140168","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Ginsenoside Rb1 (Rb1) is a biologically active component of ginseng [<i>Panax ginseng</i> C.A. Meyer (Araliaceae)].</p><p><strong>Objective: </strong>This study determined the underlying mechanisms of Rb1 treatment that acted on diabetes-injured lungs in diabetic rats.</p><p><strong>Materials and methods: </strong>Streptozotocin (STZ)-induced diabetic rat model was used. Male Sprague-Dawley (SD) rats were divided into four groups (<i>n</i> = 10): control, Rb1 (20 mg/kg), insulin (15 U/kg to attain the euglycaemic state) and diabetic (untreated). After treatment for six weeks, oxidative stress assay; histological and ultrastructure analyses; TNF-α, TGF-β, IL-1 and IL-6 protein expression analyses; and the detection of apoptosis were performed.</p><p><strong>Results: </strong>There was decreased activity of SOD (3.53-fold), CAT (2.55-fold) and GSH (1.63-fold) and increased levels of NO (4.47-fold) and MDA (3.86-fold) in the diabetic group from control. Rb1 treatment increased SOD (2.4-fold), CAT (1.9-fold) and GSH (1.29-fold) and decreased the levels of NO (1.76-fold) and MDA (1.51-fold) as compared with diabetic rats. The expression of IL-6 (5.13-fold), IL-1α (2.35-fold), TNF-α (2.35-fold) and TGF-β (2.39-fold) was increased in diabetic rats from control. IL-6 (2.43-fold), IL-1α (2.27-fold), TNF-α (1.68-fold) and TGF-β (2.3-fold) were decreased in the Rb1 treatment group. Diabetes increased the apoptosis rate (2.23-fold vs. control), and Rb1 treatment decreased the apoptosis rate (1.73-fold vs. the diabetic rats). Rb1 and insulin ameliorated lung tissue injury.</p><p><strong>Discussion and conclusions: </strong>These findings indicate that Rb1 could be useful for mitigating oxidative damage and inflammatory infiltration in the diabetic lung.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662009/pdf/","citationCount":"1","resultStr":"{\"title\":\"Ginsenoside Rb1 reduces oxidative/carbonyl stress damage and ameliorates inflammation in the lung of streptozotocin-induced diabetic rats.\",\"authors\":\"Hao Su, Cheng-Ju Tian, Ying Wang, Jiaojiao Shi, Xiaoxiao Chen, Zhong Zhen, Yu Bai, Lan Deng, Chunpeng Feng, Zhuang Ma, Jinfeng Liu\",\"doi\":\"10.1080/13880209.2022.2140168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context: </strong>Ginsenoside Rb1 (Rb1) is a biologically active component of ginseng [<i>Panax ginseng</i> C.A. Meyer (Araliaceae)].</p><p><strong>Objective: </strong>This study determined the underlying mechanisms of Rb1 treatment that acted on diabetes-injured lungs in diabetic rats.</p><p><strong>Materials and methods: </strong>Streptozotocin (STZ)-induced diabetic rat model was used. Male Sprague-Dawley (SD) rats were divided into four groups (<i>n</i> = 10): control, Rb1 (20 mg/kg), insulin (15 U/kg to attain the euglycaemic state) and diabetic (untreated). After treatment for six weeks, oxidative stress assay; histological and ultrastructure analyses; TNF-α, TGF-β, IL-1 and IL-6 protein expression analyses; and the detection of apoptosis were performed.</p><p><strong>Results: </strong>There was decreased activity of SOD (3.53-fold), CAT (2.55-fold) and GSH (1.63-fold) and increased levels of NO (4.47-fold) and MDA (3.86-fold) in the diabetic group from control. Rb1 treatment increased SOD (2.4-fold), CAT (1.9-fold) and GSH (1.29-fold) and decreased the levels of NO (1.76-fold) and MDA (1.51-fold) as compared with diabetic rats. The expression of IL-6 (5.13-fold), IL-1α (2.35-fold), TNF-α (2.35-fold) and TGF-β (2.39-fold) was increased in diabetic rats from control. IL-6 (2.43-fold), IL-1α (2.27-fold), TNF-α (1.68-fold) and TGF-β (2.3-fold) were decreased in the Rb1 treatment group. Diabetes increased the apoptosis rate (2.23-fold vs. control), and Rb1 treatment decreased the apoptosis rate (1.73-fold vs. the diabetic rats). Rb1 and insulin ameliorated lung tissue injury.</p><p><strong>Discussion and conclusions: </strong>These findings indicate that Rb1 could be useful for mitigating oxidative damage and inflammatory infiltration in the diabetic lung.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662009/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13880209.2022.2140168\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13880209.2022.2140168","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ginsenoside Rb1 reduces oxidative/carbonyl stress damage and ameliorates inflammation in the lung of streptozotocin-induced diabetic rats.
Context: Ginsenoside Rb1 (Rb1) is a biologically active component of ginseng [Panax ginseng C.A. Meyer (Araliaceae)].
Objective: This study determined the underlying mechanisms of Rb1 treatment that acted on diabetes-injured lungs in diabetic rats.
Materials and methods: Streptozotocin (STZ)-induced diabetic rat model was used. Male Sprague-Dawley (SD) rats were divided into four groups (n = 10): control, Rb1 (20 mg/kg), insulin (15 U/kg to attain the euglycaemic state) and diabetic (untreated). After treatment for six weeks, oxidative stress assay; histological and ultrastructure analyses; TNF-α, TGF-β, IL-1 and IL-6 protein expression analyses; and the detection of apoptosis were performed.
Results: There was decreased activity of SOD (3.53-fold), CAT (2.55-fold) and GSH (1.63-fold) and increased levels of NO (4.47-fold) and MDA (3.86-fold) in the diabetic group from control. Rb1 treatment increased SOD (2.4-fold), CAT (1.9-fold) and GSH (1.29-fold) and decreased the levels of NO (1.76-fold) and MDA (1.51-fold) as compared with diabetic rats. The expression of IL-6 (5.13-fold), IL-1α (2.35-fold), TNF-α (2.35-fold) and TGF-β (2.39-fold) was increased in diabetic rats from control. IL-6 (2.43-fold), IL-1α (2.27-fold), TNF-α (1.68-fold) and TGF-β (2.3-fold) were decreased in the Rb1 treatment group. Diabetes increased the apoptosis rate (2.23-fold vs. control), and Rb1 treatment decreased the apoptosis rate (1.73-fold vs. the diabetic rats). Rb1 and insulin ameliorated lung tissue injury.
Discussion and conclusions: These findings indicate that Rb1 could be useful for mitigating oxidative damage and inflammatory infiltration in the diabetic lung.