化学-蛋白质关系提取与预训练提示调谐。

Jianping He, Fang Li, Xinyue Hu, Jianfu Li, Yi Nian, Jingqi Wang, Yang Xiang, Qiang Wei, Hua Xu, Cui Tao
{"title":"化学-蛋白质关系提取与预训练提示调谐。","authors":"Jianping He,&nbsp;Fang Li,&nbsp;Xinyue Hu,&nbsp;Jianfu Li,&nbsp;Yi Nian,&nbsp;Jingqi Wang,&nbsp;Yang Xiang,&nbsp;Qiang Wei,&nbsp;Hua Xu,&nbsp;Cui Tao","doi":"10.1109/ichi54592.2022.00120","DOIUrl":null,"url":null,"abstract":"<p><p>Biomedical relation extraction plays a critical role in the construction of high-quality knowledge graphs and databases, which can further support many downstream applications. Pre-trained prompt tuning, as a new paradigm, has shown great potential in many natural language processing (NLP) tasks. Through inserting a piece of text into the original input, prompt converts NLP tasks into masked language problems, which could be better addressed by pre-trained language models (PLMs). In this study, we applied pre-trained prompt tuning to chemical-protein relation extraction using the BioCreative VI CHEMPROT dataset. The experiment results showed that the pre-trained prompt tuning outperformed the baseline approach in chemical-protein interaction classification. We conclude that the prompt tuning can improve the efficiency of the PLMs on chemical-protein relation extraction tasks.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474649/pdf/nihms-1887657.pdf","citationCount":"1","resultStr":"{\"title\":\"Chemical-Protein Relation Extraction with Pre-trained Prompt Tuning.\",\"authors\":\"Jianping He,&nbsp;Fang Li,&nbsp;Xinyue Hu,&nbsp;Jianfu Li,&nbsp;Yi Nian,&nbsp;Jingqi Wang,&nbsp;Yang Xiang,&nbsp;Qiang Wei,&nbsp;Hua Xu,&nbsp;Cui Tao\",\"doi\":\"10.1109/ichi54592.2022.00120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomedical relation extraction plays a critical role in the construction of high-quality knowledge graphs and databases, which can further support many downstream applications. Pre-trained prompt tuning, as a new paradigm, has shown great potential in many natural language processing (NLP) tasks. Through inserting a piece of text into the original input, prompt converts NLP tasks into masked language problems, which could be better addressed by pre-trained language models (PLMs). In this study, we applied pre-trained prompt tuning to chemical-protein relation extraction using the BioCreative VI CHEMPROT dataset. The experiment results showed that the pre-trained prompt tuning outperformed the baseline approach in chemical-protein interaction classification. We conclude that the prompt tuning can improve the efficiency of the PLMs on chemical-protein relation extraction tasks.</p>\",\"PeriodicalId\":73284,\"journal\":{\"name\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474649/pdf/nihms-1887657.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ichi54592.2022.00120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ichi54592.2022.00120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

生物医学关系提取在构建高质量的知识图谱和数据库中起着至关重要的作用,可以进一步支持许多下游应用。预训练提示调优作为一种新的模式,在许多自然语言处理(NLP)任务中显示出巨大的潜力。通过在原始输入中插入一段文本,prompt将NLP任务转换为隐藏的语言问题,这些问题可以通过预训练的语言模型(plm)更好地解决。在这项研究中,我们使用BioCreative VI CHEMPROT数据集将预训练的提示调谐应用于化学-蛋白质关系提取。实验结果表明,预先训练的提示调整方法在化学-蛋白质相互作用分类中优于基线方法。我们的结论是,快速调整可以提高PLMs在化学-蛋白质关系提取任务中的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemical-Protein Relation Extraction with Pre-trained Prompt Tuning.

Biomedical relation extraction plays a critical role in the construction of high-quality knowledge graphs and databases, which can further support many downstream applications. Pre-trained prompt tuning, as a new paradigm, has shown great potential in many natural language processing (NLP) tasks. Through inserting a piece of text into the original input, prompt converts NLP tasks into masked language problems, which could be better addressed by pre-trained language models (PLMs). In this study, we applied pre-trained prompt tuning to chemical-protein relation extraction using the BioCreative VI CHEMPROT dataset. The experiment results showed that the pre-trained prompt tuning outperformed the baseline approach in chemical-protein interaction classification. We conclude that the prompt tuning can improve the efficiency of the PLMs on chemical-protein relation extraction tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An average-case efficient two-stage algorithm for enumerating all longest common substrings of minimum length k between genome pairs. Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups. Attention-based Imputation of Missing Values in Electronic Health Records Tabular Data. Developing a computational representation of human physical activity and exercise using open ontology-based approach: a Tai Chi use case. Evaluating Generative Models in Medical Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1