受因素刺激的内在终止:在一些朋友的帮助下过日子。

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Transcription-Austin Pub Date : 2022-08-01 Epub Date: 2022-09-25 DOI:10.1080/21541264.2022.2127602
Zachary F Mandell, Dani Zemba, Paul Babitzke
{"title":"受因素刺激的内在终止:在一些朋友的帮助下过日子。","authors":"Zachary F Mandell,&nbsp;Dani Zemba,&nbsp;Paul Babitzke","doi":"10.1080/21541264.2022.2127602","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription termination is known to occur via two mechanisms in bacteria, intrinsic termination (also frequently referred to as Rho-independent or factor-independent termination) and Rho-dependent termination. Based primarily on <i>in vitro</i> studies using <i>Escherichia coli</i> RNA polymerase, it was generally assumed that intrinsic termination and Rho-dependent termination are distinct mechanisms and that the signals required for intrinsic termination are present primarily within the nucleic acids. In this review, we detail recent findings from studies in <i>Bacillus subtilis</i> showing that intrinsic termination in this organism is highly stimulated by NusA, NusG, and even Rho. In NusA-stimulated intrinsic termination, NusA facilitates the formation of weak terminator hairpins and compensates for distal U-rich tract interruptions. In NusG-stimulated intrinsic termination, NusG stabilizes a sequence-dependent pause at the point of termination, which extends the time frame for RNA hairpins with weak terminal base pairs to form in either a NusA-stimulated or a NusA-independent fashion. In Rho-stimulated intrinsic termination, Rho prevents the formation of antiterminator-like RNA structures that could otherwise compete with the terminator hairpin. Combined, NusA, NusG, and Rho stimulate approximately 97% of all intrinsic terminators in <i>B. subtilis</i>. Thus, the general view that intrinsic termination is primarily a factor-independent process needs to be revised to account for recent findings. Moreover, the historical distinction between Rho-dependent and intrinsic termination is overly simplistic and needs to be modernized.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"13 4-5","pages":"96-108"},"PeriodicalIF":3.6000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715273/pdf/KTRN_13_2127602.pdf","citationCount":"2","resultStr":"{\"title\":\"Factor-stimulated intrinsic termination: getting by with a little help from some friends.\",\"authors\":\"Zachary F Mandell,&nbsp;Dani Zemba,&nbsp;Paul Babitzke\",\"doi\":\"10.1080/21541264.2022.2127602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcription termination is known to occur via two mechanisms in bacteria, intrinsic termination (also frequently referred to as Rho-independent or factor-independent termination) and Rho-dependent termination. Based primarily on <i>in vitro</i> studies using <i>Escherichia coli</i> RNA polymerase, it was generally assumed that intrinsic termination and Rho-dependent termination are distinct mechanisms and that the signals required for intrinsic termination are present primarily within the nucleic acids. In this review, we detail recent findings from studies in <i>Bacillus subtilis</i> showing that intrinsic termination in this organism is highly stimulated by NusA, NusG, and even Rho. In NusA-stimulated intrinsic termination, NusA facilitates the formation of weak terminator hairpins and compensates for distal U-rich tract interruptions. In NusG-stimulated intrinsic termination, NusG stabilizes a sequence-dependent pause at the point of termination, which extends the time frame for RNA hairpins with weak terminal base pairs to form in either a NusA-stimulated or a NusA-independent fashion. In Rho-stimulated intrinsic termination, Rho prevents the formation of antiterminator-like RNA structures that could otherwise compete with the terminator hairpin. Combined, NusA, NusG, and Rho stimulate approximately 97% of all intrinsic terminators in <i>B. subtilis</i>. Thus, the general view that intrinsic termination is primarily a factor-independent process needs to be revised to account for recent findings. Moreover, the historical distinction between Rho-dependent and intrinsic termination is overly simplistic and needs to be modernized.</p>\",\"PeriodicalId\":47009,\"journal\":{\"name\":\"Transcription-Austin\",\"volume\":\"13 4-5\",\"pages\":\"96-108\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715273/pdf/KTRN_13_2127602.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transcription-Austin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21541264.2022.2127602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transcription-Austin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541264.2022.2127602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

已知转录终止在细菌中通过两种机制发生,固有终止(也称为Rho非依赖性或因子非依赖性终止)和Rho依赖性终止。主要基于使用大肠杆菌RNA聚合酶的体外研究,通常认为固有终止和Rho依赖性终止是不同的机制,并且固有终止所需的信号主要存在于核酸中。在这篇综述中,我们详细介绍了枯草芽孢杆菌的最新研究结果,表明该生物体的内在终止受到NusA、NusG甚至Rho的高度刺激。在NusA刺激的内在终止中,NusA促进了弱终止发夹的形成,并补偿了远端富U束的中断。在NusG刺激的内在终止中,NusG在终止点稳定了序列依赖性暂停,这延长了具有弱末端碱基对的RNA发夹以NusA刺激或NusA独立方式形成的时间框架。在Rho刺激的内在终止中,Rho阻止了抗终止子样RNA结构的形成,否则这些结构可能与终止子发夹竞争。NusA、NusG和Rho联合刺激枯草芽孢杆菌中约97%的固有终止子。因此,关于内在终止主要是一个独立于因素的过程的普遍观点需要加以修正,以考虑到最近的调查结果。此外,Rho依赖性终止和内在终止之间的历史区别过于简单化,需要现代化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Factor-stimulated intrinsic termination: getting by with a little help from some friends.

Transcription termination is known to occur via two mechanisms in bacteria, intrinsic termination (also frequently referred to as Rho-independent or factor-independent termination) and Rho-dependent termination. Based primarily on in vitro studies using Escherichia coli RNA polymerase, it was generally assumed that intrinsic termination and Rho-dependent termination are distinct mechanisms and that the signals required for intrinsic termination are present primarily within the nucleic acids. In this review, we detail recent findings from studies in Bacillus subtilis showing that intrinsic termination in this organism is highly stimulated by NusA, NusG, and even Rho. In NusA-stimulated intrinsic termination, NusA facilitates the formation of weak terminator hairpins and compensates for distal U-rich tract interruptions. In NusG-stimulated intrinsic termination, NusG stabilizes a sequence-dependent pause at the point of termination, which extends the time frame for RNA hairpins with weak terminal base pairs to form in either a NusA-stimulated or a NusA-independent fashion. In Rho-stimulated intrinsic termination, Rho prevents the formation of antiterminator-like RNA structures that could otherwise compete with the terminator hairpin. Combined, NusA, NusG, and Rho stimulate approximately 97% of all intrinsic terminators in B. subtilis. Thus, the general view that intrinsic termination is primarily a factor-independent process needs to be revised to account for recent findings. Moreover, the historical distinction between Rho-dependent and intrinsic termination is overly simplistic and needs to be modernized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transcription-Austin
Transcription-Austin BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
6.50
自引率
5.60%
发文量
9
期刊最新文献
Hypoxia-inducing transcription factors: architects of tumorigenesis and targets for anticancer drug discovery. From silence to symphony: transcriptional repression and recovery in response to DNA damage. Structure and function of bacterial transcription regulators of the SorC family. Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome. Negative feedback systems for modelling NF-κB transcription factor oscillatory activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1