{"title":"溶酶体离子通道:它们有什么好处,它们是可药物靶点吗?","authors":"Erika Riederer, Chunlei Cang, Dejian Ren","doi":"10.1146/annurev-pharmtox-051921-013755","DOIUrl":null,"url":null,"abstract":"<p><p>Lysosomes play fundamental roles in material digestion, cellular clearance, recycling, exocytosis, wound repair, Ca<sup>2+</sup> signaling, nutrient signaling, and gene expression regulation. The organelle also serves as a hub for important signaling networks involving the mTOR and AKT kinases. Electrophysiological recording and molecular and structural studies in the past decade have uncovered several unique lysosomal ion channels and transporters, including TPCs, TMEM175, TRPMLs, CLN7, and CLC-7. They underlie the organelle's permeability to major ions, including K<sup>+</sup>, Na<sup>+</sup>, H<sup>+</sup>, Ca<sup>2+</sup>, and Cl<sup>-</sup>. The channels are regulated by numerous cellular factors, ranging from H<sup>+</sup> in the lumen and voltage across the lysosomal membrane to ATP in the cytosol to growth factors outside the cell. Genetic variations in the channel/transporter genes are associated with diseases that include lysosomal storage diseases and neurodegenerative diseases. Recent studies with human genetics and channel activators suggest that lysosomal channels may be attractive targets for the development of therapeutics for the prevention of and intervention in human diseases.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":"63 ","pages":"19-41"},"PeriodicalIF":11.2000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Lysosomal Ion Channels: What Are They Good For and Are They Druggable Targets?\",\"authors\":\"Erika Riederer, Chunlei Cang, Dejian Ren\",\"doi\":\"10.1146/annurev-pharmtox-051921-013755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lysosomes play fundamental roles in material digestion, cellular clearance, recycling, exocytosis, wound repair, Ca<sup>2+</sup> signaling, nutrient signaling, and gene expression regulation. The organelle also serves as a hub for important signaling networks involving the mTOR and AKT kinases. Electrophysiological recording and molecular and structural studies in the past decade have uncovered several unique lysosomal ion channels and transporters, including TPCs, TMEM175, TRPMLs, CLN7, and CLC-7. They underlie the organelle's permeability to major ions, including K<sup>+</sup>, Na<sup>+</sup>, H<sup>+</sup>, Ca<sup>2+</sup>, and Cl<sup>-</sup>. The channels are regulated by numerous cellular factors, ranging from H<sup>+</sup> in the lumen and voltage across the lysosomal membrane to ATP in the cytosol to growth factors outside the cell. Genetic variations in the channel/transporter genes are associated with diseases that include lysosomal storage diseases and neurodegenerative diseases. Recent studies with human genetics and channel activators suggest that lysosomal channels may be attractive targets for the development of therapeutics for the prevention of and intervention in human diseases.</p>\",\"PeriodicalId\":8057,\"journal\":{\"name\":\"Annual review of pharmacology and toxicology\",\"volume\":\"63 \",\"pages\":\"19-41\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of pharmacology and toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-pharmtox-051921-013755\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of pharmacology and toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-pharmtox-051921-013755","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Lysosomal Ion Channels: What Are They Good For and Are They Druggable Targets?
Lysosomes play fundamental roles in material digestion, cellular clearance, recycling, exocytosis, wound repair, Ca2+ signaling, nutrient signaling, and gene expression regulation. The organelle also serves as a hub for important signaling networks involving the mTOR and AKT kinases. Electrophysiological recording and molecular and structural studies in the past decade have uncovered several unique lysosomal ion channels and transporters, including TPCs, TMEM175, TRPMLs, CLN7, and CLC-7. They underlie the organelle's permeability to major ions, including K+, Na+, H+, Ca2+, and Cl-. The channels are regulated by numerous cellular factors, ranging from H+ in the lumen and voltage across the lysosomal membrane to ATP in the cytosol to growth factors outside the cell. Genetic variations in the channel/transporter genes are associated with diseases that include lysosomal storage diseases and neurodegenerative diseases. Recent studies with human genetics and channel activators suggest that lysosomal channels may be attractive targets for the development of therapeutics for the prevention of and intervention in human diseases.
期刊介绍:
Since 1961, the Annual Review of Pharmacology and Toxicology has been a comprehensive resource covering significant developments in pharmacology and toxicology. The journal encompasses various aspects, including receptors, transporters, enzymes, chemical agents, drug development science, and systems like the immune, nervous, gastrointestinal, cardiovascular, endocrine, and pulmonary systems. Special topics are also featured in this annual review.