Pub Date : 2024-10-10DOI: 10.1146/annurev-pharmtox-061724-080811
Paul McGonigle
Advances in molecular biology and molecular genetics as well as major scientific breakthroughs in immunology and oncology have led to the rapid growth of biologic therapeutics. Their success has resulted in significant changes to virtually every step in the drug discovery and development process. Biologics are produced by living organisms, and screening libraries are generated by immunization or phage display. Lead optimization utilizes sophisticated protein engineering to improve drug-like properties and targeting specificity. The manufacturing process for biologics is complex and requires highly specialized facilities. Determination of pharmacology and safety must overcome the complications associated with species specificity. Initial clinical testing must proceed more slowly and carefully due to the limited predictive utility of preclinical data. In summary, the drug discovery and development process has been dramatically altered by biologic therapeutics and will continue to evolve with the introduction of messenger RNA-based therapeutics and the application of artificial intelligence.
{"title":"How Biologics Have Changed the Drug Discovery Landscape.","authors":"Paul McGonigle","doi":"10.1146/annurev-pharmtox-061724-080811","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-061724-080811","url":null,"abstract":"<p><p>Advances in molecular biology and molecular genetics as well as major scientific breakthroughs in immunology and oncology have led to the rapid growth of biologic therapeutics. Their success has resulted in significant changes to virtually every step in the drug discovery and development process. Biologics are produced by living organisms, and screening libraries are generated by immunization or phage display. Lead optimization utilizes sophisticated protein engineering to improve drug-like properties and targeting specificity. The manufacturing process for biologics is complex and requires highly specialized facilities. Determination of pharmacology and safety must overcome the complications associated with species specificity. Initial clinical testing must proceed more slowly and carefully due to the limited predictive utility of preclinical data. In summary, the drug discovery and development process has been dramatically altered by biologic therapeutics and will continue to evolve with the introduction of messenger RNA-based therapeutics and the application of artificial intelligence.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1146/annurev-pharmtox-061724-080548
Marina E Wolf
The last two decades have witnessed substantial advances in identifying synaptic plasticity responsible for behavioral changes in animal models of substance use disorder. We have learned the most about cocaine-induced plasticity in the nucleus accumbens and its relationship to cocaine seeking, so that is the focus in this review. Synaptic plasticity pointing to potential therapeutic targets has been identified mainly using two drug self-administration models: extinction-reinstatement and abstinence models. A relationship between cocaine seeking and potentiated AMPAR transmission in nucleus accumbens is indicated by both models. In particular, an atypical subpopulation-Ca2+-permeable or CP-AMPARs-mediates cue-induced seeking that persists even after long periods of abstinence, modeling the persistent vulnerability to relapse that represents a major challenge in treating substance use disorder. We review strategies to reverse CP-AMPAR plasticity; strategies targeting other components of excitatory synapses, including dysregulated glutamate uptake and release; and behavioral interventions that can be augmented by harnessing synaptic plasticity.
{"title":"Targeting Neuroplasticity in Substance Use Disorders: Implications for Therapeutics.","authors":"Marina E Wolf","doi":"10.1146/annurev-pharmtox-061724-080548","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-061724-080548","url":null,"abstract":"<p><p>The last two decades have witnessed substantial advances in identifying synaptic plasticity responsible for behavioral changes in animal models of substance use disorder. We have learned the most about cocaine-induced plasticity in the nucleus accumbens and its relationship to cocaine seeking, so that is the focus in this review. Synaptic plasticity pointing to potential therapeutic targets has been identified mainly using two drug self-administration models: extinction-reinstatement and abstinence models. A relationship between cocaine seeking and potentiated AMPAR transmission in nucleus accumbens is indicated by both models. In particular, an atypical subpopulation-Ca2+-permeable or CP-AMPARs-mediates cue-induced seeking that persists even after long periods of abstinence, modeling the persistent vulnerability to relapse that represents a major challenge in treating substance use disorder. We review strategies to reverse CP-AMPAR plasticity; strategies targeting other components of excitatory synapses, including dysregulated glutamate uptake and release; and behavioral interventions that can be augmented by harnessing synaptic plasticity.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1146/annurev-pharmtox-061724-080739
Tri Q Do, Björn C Knollmann
Ryanodine receptor type 2 (RyR2) is the principal intracellular calcium release channel in the cardiac sarcoplasmic reticulum (SR). Pathological RyR2 hyperactivity generates arrhythmia risk in genetic and structural heart diseases. RYR2 gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia. In structural heart diseases (i.e., heart failure), posttranslation modifications render RyR2 channels leaky, resulting in pathologic calcium release during diastole, contributing to arrhythmogenesis and contractile dysfunction. Hence, RyR2 represents a therapeutic target in arrhythmogenic heart diseases. We provide an overview of the structure and function of RyR2, and then review US Food and Drug Administration-approved and investigational RyR2 inhibitors. A therapeutic classification of RyR2 inhibitors is proposed based on their mechanism of action. Class I RyR2 inhibitors (e.g., flecainide) do not change SR calcium content and are primarily antiarrhythmic. Class II RyR2 inhibitors (e.g., dantrolene) increase SR calcium content, making them less effective as antiarrhythmics but preferable in conditions with reduced SR calcium content such as heart failure.
Ryanodine 受体 2 型(RyR2)是心脏肌浆网(SR)中主要的细胞内钙释放通道。在遗传性和结构性心脏病中,RyR2 的病理性亢进会导致心律失常的风险。RYR2 功能增益突变会导致儿茶酚胺能多态性室性心动过速。在结构性心脏病(即心力衰竭)中,翻译后修饰使 RyR2 通道泄漏,导致舒张期病理性钙释放,导致心律失常发生和收缩功能障碍。因此,RyR2 是心律失常性心脏病的治疗靶点。我们概述了 RyR2 的结构和功能,然后回顾了美国食品和药物管理局批准和研究的 RyR2 抑制剂。根据 RyR2 抑制剂的作用机制,提出了 RyR2 抑制剂的治疗分类。I 类 RyR2 抑制剂(如福来尼特)不改变 SR 钙含量,主要用于抗心律失常。II 类 RyR2 抑制剂(如丹曲林)可增加 SR 钙含量,因此作为抗心律失常药物的效果较差,但在 SR 钙含量降低的情况下(如心力衰竭)更适合使用。
{"title":"Inhibitors of Intracellular RyR2 Calcium Release Channels as Therapeutic Agents in Arrhythmogenic Heart Diseases.","authors":"Tri Q Do, Björn C Knollmann","doi":"10.1146/annurev-pharmtox-061724-080739","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-061724-080739","url":null,"abstract":"<p><p>Ryanodine receptor type 2 (RyR2) is the principal intracellular calcium release channel in the cardiac sarcoplasmic reticulum (SR). Pathological RyR2 hyperactivity generates arrhythmia risk in genetic and structural heart diseases. <i>RYR2</i> gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia. In structural heart diseases (i.e., heart failure), posttranslation modifications render RyR2 channels leaky, resulting in pathologic calcium release during diastole, contributing to arrhythmogenesis and contractile dysfunction. Hence, RyR2 represents a therapeutic target in arrhythmogenic heart diseases. We provide an overview of the structure and function of RyR2, and then review US Food and Drug Administration-approved and investigational RyR2 inhibitors. A therapeutic classification of RyR2 inhibitors is proposed based on their mechanism of action. Class I RyR2 inhibitors (e.g., flecainide) do not change SR calcium content and are primarily antiarrhythmic. Class II RyR2 inhibitors (e.g., dantrolene) increase SR calcium content, making them less effective as antiarrhythmics but preferable in conditions with reduced SR calcium content such as heart failure.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1146/annurev-pharmtox-031124-101146
Ariana M Chao, Simeon Taylor, Molly Moore, Anastassia Amaro, Thomas A Wadden
Obesity is a global health concern. Progress in understanding the physiology of obesity and weight reduction has provided new drug targets. Development and testing of new antiobesity medications (AOMs) has the potential to quickly expand options for treatment. In this review, we briefly summarize the physiology of obesity and weight reduction, as well as medications currently approved for weight management. We highlight the increasing use of incretin and nutrient-stimulated hormone-based therapies. We conclude with an overview of AOMs progressing through the pipeline and discuss their implications for the rapidly evolving field of obesity management.
{"title":"Evolving Approaches for Pharmacological Therapy of Obesity.","authors":"Ariana M Chao, Simeon Taylor, Molly Moore, Anastassia Amaro, Thomas A Wadden","doi":"10.1146/annurev-pharmtox-031124-101146","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-031124-101146","url":null,"abstract":"<p><p>Obesity is a global health concern. Progress in understanding the physiology of obesity and weight reduction has provided new drug targets. Development and testing of new antiobesity medications (AOMs) has the potential to quickly expand options for treatment. In this review, we briefly summarize the physiology of obesity and weight reduction, as well as medications currently approved for weight management. We highlight the increasing use of incretin and nutrient-stimulated hormone-based therapies. We conclude with an overview of AOMs progressing through the pipeline and discuss their implications for the rapidly evolving field of obesity management.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1146/annurev-pharmtox-061724-080935
R Mosch, M van der Lee, H J Guchelaar, J J Swen
Pharmacogenetics (PGx) aims to optimize drug treatment outcomes by using a patient's genetic profile for individualized drug and dose selection. Currently, reactive and pretherapeutic single-gene PGx tests are increasingly applied in clinical practice in several countries and institutions. With over 95% of the population carrying at least one actionable PGx variant, and with drugs impacted by these genetic variants being in common use, pretherapeutic or preemptive PGx panel testing appears to be an attractive option for better-informed drug prescribing. Here, we discuss the current state of PGx panel testing and explore the potential for clinical implementation. We conclude that available evidence supports the implementation of pretherapeutic PGx panel testing for drugs covered in the PGx guidelines, yet identification of specific patient populations that benefit most and cost-effectiveness data are necessary to support large-scale implementation.
{"title":"Pharmacogenetic Panel Testing: A Review of Current Practice and Potential for Clinical Implementation.","authors":"R Mosch, M van der Lee, H J Guchelaar, J J Swen","doi":"10.1146/annurev-pharmtox-061724-080935","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-061724-080935","url":null,"abstract":"<p><p>Pharmacogenetics (PGx) aims to optimize drug treatment outcomes by using a patient's genetic profile for individualized drug and dose selection. Currently, reactive and pretherapeutic single-gene PGx tests are increasingly applied in clinical practice in several countries and institutions. With over 95% of the population carrying at least one actionable PGx variant, and with drugs impacted by these genetic variants being in common use, pretherapeutic or preemptive PGx panel testing appears to be an attractive option for better-informed drug prescribing. Here, we discuss the current state of PGx panel testing and explore the potential for clinical implementation. We conclude that available evidence supports the implementation of pretherapeutic PGx panel testing for drugs covered in the PGx guidelines, yet identification of specific patient populations that benefit most and cost-effectiveness data are necessary to support large-scale implementation.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1146/annurev-pharmtox-031524-021631
Benoît Delabays, Chiara De Paoli, Andrea Miller-Nesbitt, Vincent Mooser
Genetically driven clinical trial enrichment has been proposed to accelerate and reduce the cost of developing new therapeutics. Usage of this approach has not been comprehensively reviewed. We searched Ovid MEDLINE, Embase, Web of Science, Cochrane Library, ClinicalTrials.gov, and WHO ICTRP for articles published between 2010 and 2023. Excluding absorption, distribution, metabolism, and elimination pharmacogenetic studies and anti-infectives, we found 95 completed, 4 terminated, and 22 ongoing prospective genetically enriched trials on 110 drugs for 48 nononcology, nonrare syndromic indications. Trial sizes ranged from 4 to 6,147 participants (median 72) and covered numerous disease areas, particularly neurology (30), metabolism (22), and psychiatry (17). Fifty-six completed studies (60%) met their primary end point. Overall, this scoping review demonstrates that genetically enriched trials are feasible and scalable across disease areas and provide critical information for further development, or attrition, of investigational drugs. Large, appropriately designed disease-, hospital-, or population-based biobanks will undoubtedly facilitate this type of precision drug development approach.
{"title":"Genetically Enriched Clinical Trials for Precision Development of Noncancer Therapeutics: A Scoping Review.","authors":"Benoît Delabays, Chiara De Paoli, Andrea Miller-Nesbitt, Vincent Mooser","doi":"10.1146/annurev-pharmtox-031524-021631","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-031524-021631","url":null,"abstract":"<p><p>Genetically driven clinical trial enrichment has been proposed to accelerate and reduce the cost of developing new therapeutics. Usage of this approach has not been comprehensively reviewed. We searched Ovid MEDLINE, Embase, Web of Science, Cochrane Library, ClinicalTrials.gov, and WHO ICTRP for articles published between 2010 and 2023. Excluding absorption, distribution, metabolism, and elimination pharmacogenetic studies and anti-infectives, we found 95 completed, 4 terminated, and 22 ongoing prospective genetically enriched trials on 110 drugs for 48 nononcology, nonrare syndromic indications. Trial sizes ranged from 4 to 6,147 participants (median 72) and covered numerous disease areas, particularly neurology (30), metabolism (22), and psychiatry (17). Fifty-six completed studies (60%) met their primary end point. Overall, this scoping review demonstrates that genetically enriched trials are feasible and scalable across disease areas and provide critical information for further development, or attrition, of investigational drugs. Large, appropriately designed disease-, hospital-, or population-based biobanks will undoubtedly facilitate this type of precision drug development approach.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1146/annurev-pharmtox-031524-025239
Evan D Kelly, Mark J Ranek, Manling Zhang, David A Kass, Grace K Muller
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides. While the 11 PDE subfamilies share common features, key differences confer signaling specificity. The differences include substrate selectivity, enzymatic activity regulation, tissue expression, and subcellular localization. Selective inhibitors of each subfamily have elucidated the protean role of PDEs on normal cell function. PDEs are also linked to diseases, some of which affect the immune, cardiac, and vascular systems. Selective PDE inhibitors are clinically used to treat these specific disorders. Ongoing preclinical studies and clinical trials are likely to lead to the approval of additional PDE-targeting drugs for therapy in human disease. In this review, we discuss the structure and function of PDEs and examine current and evolving therapeutic uses of PDE inhibitors, highlighting their mechanisms and innovative applications that could further leverage this crucial family of enzymes in clinical settings.
{"title":"Phosphodiesterases: Evolving Concepts and Implications for Human Therapeutics.","authors":"Evan D Kelly, Mark J Ranek, Manling Zhang, David A Kass, Grace K Muller","doi":"10.1146/annurev-pharmtox-031524-025239","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-031524-025239","url":null,"abstract":"<p><p>Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides. While the 11 PDE subfamilies share common features, key differences confer signaling specificity. The differences include substrate selectivity, enzymatic activity regulation, tissue expression, and subcellular localization. Selective inhibitors of each subfamily have elucidated the protean role of PDEs on normal cell function. PDEs are also linked to diseases, some of which affect the immune, cardiac, and vascular systems. Selective PDE inhibitors are clinically used to treat these specific disorders. Ongoing preclinical studies and clinical trials are likely to lead to the approval of additional PDE-targeting drugs for therapy in human disease. In this review, we discuss the structure and function of PDEs and examine current and evolving therapeutic uses of PDE inhibitors, highlighting their mechanisms and innovative applications that could further leverage this crucial family of enzymes in clinical settings.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1146/annurev-pharmtox-090324-021727
Paul A Insel, Susan G Amara, Amrita Ahluwalia
The reviews in Volume 65 of the Annual Review of Pharmacology and Toxicology cover a wide variety of topics in pharmacology and toxicology focused upon the pathway from preclinical studies to clinical trials. Many of these reviews discuss the identification and validation of new therapeutic targets and/or novel therapeutic approaches. Examples include reviews that focus on the treatment of obesity, neuropsychiatric disorders, Parkinson's disease, substance use disorders, liver fibrosis, cardiac arrythmias, chronic intestinal inflammation, prostate cancer, immuno-oncology, sickle cell disease, and snakebite envenoming. Other topics include drug discovery of biologics, microphysiological systems, and human induced pluripotent stem cell-derived organoids and organ-on-chip technology integrated with artificial intelligence methodologies. Together, these and other reviews give new insights into the assessment of aspects of toxicology and provide readers a glimpse of advances in pharmacology and toxicology that we believe will advance health care and environmental safety.
{"title":"Introduction to the Theme \"Novel Therapeutics with the Potential to Advance Health Care\".","authors":"Paul A Insel, Susan G Amara, Amrita Ahluwalia","doi":"10.1146/annurev-pharmtox-090324-021727","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-090324-021727","url":null,"abstract":"<p><p>The reviews in Volume 65 of the <i>Annual Review of Pharmacology and Toxicology</i> cover a wide variety of topics in pharmacology and toxicology focused upon the pathway from preclinical studies to clinical trials. Many of these reviews discuss the identification and validation of new therapeutic targets and/or novel therapeutic approaches. Examples include reviews that focus on the treatment of obesity, neuropsychiatric disorders, Parkinson's disease, substance use disorders, liver fibrosis, cardiac arrythmias, chronic intestinal inflammation, prostate cancer, immuno-oncology, sickle cell disease, and snakebite envenoming. Other topics include drug discovery of biologics, microphysiological systems, and human induced pluripotent stem cell-derived organoids and organ-on-chip technology integrated with artificial intelligence methodologies. Together, these and other reviews give new insights into the assessment of aspects of toxicology and provide readers a glimpse of advances in pharmacology and toxicology that we believe will advance health care and environmental safety.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1146/annurev-pharmtox-061724-080836
Victoria R Saca, Colin Burdette, Thomas P Sakmar
G protein-coupled receptors (GPCRs) are a superfamily of transmembrane signal transducers that facilitate the flow of chemical signals across membranes. GPCRs are a desirable class of drug targets, and the activation and deactivation dynamics of these receptors are widely studied. Multidisciplinary approaches for studying GPCRs, such as downstream biochemical signaling assays, cryo-electron microscopy structural determinations, and molecular dynamics simulations, have provided insights concerning conformational dynamics and signaling mechanisms. However, new approaches including biosensors that use luminescence- and fluorescence-based readouts have been developed to investigate GPCR-related protein interactions and dynamics directly in cellular environments. Luminescence- and fluorescence-based readout approaches have also included the development of GPCR biosensor platforms that utilize enabling technologies to facilitate multiplexing and miniaturization. General principles underlying the biosensor platforms and technologies include scalability, orthogonality, and kinetic resolution. Further application and development of GPCR biosensors could facilitate hit identification in drug discovery campaigns. The goals of this review are to summarize developments in the field of GPCR-related biosensors and to discuss the current available technologies.
{"title":"GPCR Biosensors to Study Conformational Dynamics and Signaling in Drug Discovery.","authors":"Victoria R Saca, Colin Burdette, Thomas P Sakmar","doi":"10.1146/annurev-pharmtox-061724-080836","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-061724-080836","url":null,"abstract":"<p><p>G protein-coupled receptors (GPCRs) are a superfamily of transmembrane signal transducers that facilitate the flow of chemical signals across membranes. GPCRs are a desirable class of drug targets, and the activation and deactivation dynamics of these receptors are widely studied. Multidisciplinary approaches for studying GPCRs, such as downstream biochemical signaling assays, cryo-electron microscopy structural determinations, and molecular dynamics simulations, have provided insights concerning conformational dynamics and signaling mechanisms. However, new approaches including biosensors that use luminescence- and fluorescence-based readouts have been developed to investigate GPCR-related protein interactions and dynamics directly in cellular environments. Luminescence- and fluorescence-based readout approaches have also included the development of GPCR biosensor platforms that utilize enabling technologies to facilitate multiplexing and miniaturization. General principles underlying the biosensor platforms and technologies include scalability, orthogonality, and kinetic resolution. Further application and development of GPCR biosensors could facilitate hit identification in drug discovery campaigns. The goals of this review are to summarize developments in the field of GPCR-related biosensors and to discuss the current available technologies.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1146/annurev-pharmtox-022724-095035
Zehra Yildirim, Kyle Swanson, Xuekun Wu, James Zou, Joseph Wu
In the high-stakes arena of drug discovery, the journey from bench to bedside is hindered by a daunting 92% failure rate, primarily due to unpredicted toxicities and inadequate therapeutic efficacy in clinical trials. The FDA Modernization Act 2.0 heralds a transformative approach, advocating for the integration of alternative methods to conventional animal testing, including cell-based assays that employ human induced pluripotent stem cell (iPSC)-derived organoids, and organ-on-a-chip technologies, in conjunction with sophisticated artificial intelligence (AI) methodologies. Our review explores the innovative capacity of iPSC-derived clinical trial in a dish models designed for cardiovascular disease research. We also highlight how integrating iPSC technology with AI can accelerate the identification of viable therapeutic candidates, streamline drug screening, and pave the way toward more personalized medicine. Through this, we provide a comprehensive overview of the current landscape and future implications of iPSC and AI applications being navigated by the research community and pharmaceutical industry.
{"title":"Next-Gen Therapeutics: Pioneering Drug Discovery with iPSCs, Genomics, AI, and Clinical Trials in a Dish.","authors":"Zehra Yildirim, Kyle Swanson, Xuekun Wu, James Zou, Joseph Wu","doi":"10.1146/annurev-pharmtox-022724-095035","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-022724-095035","url":null,"abstract":"<p><p>In the high-stakes arena of drug discovery, the journey from bench to bedside is hindered by a daunting 92% failure rate, primarily due to unpredicted toxicities and inadequate therapeutic efficacy in clinical trials. The FDA Modernization Act 2.0 heralds a transformative approach, advocating for the integration of alternative methods to conventional animal testing, including cell-based assays that employ human induced pluripotent stem cell (iPSC)-derived organoids, and organ-on-a-chip technologies, in conjunction with sophisticated artificial intelligence (AI) methodologies. Our review explores the innovative capacity of iPSC-derived clinical trial in a dish models designed for cardiovascular disease research. We also highlight how integrating iPSC technology with AI can accelerate the identification of viable therapeutic candidates, streamline drug screening, and pave the way toward more personalized medicine. Through this, we provide a comprehensive overview of the current landscape and future implications of iPSC and AI applications being navigated by the research community and pharmaceutical industry.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}