{"title":"人工智能在卫生保健服务中的应用的社会技术系统框架。","authors":"Megan E Salwei, Pascale Carayon","doi":"10.1177/15553434221097357","DOIUrl":null,"url":null,"abstract":"<p><p>In the coming years, artificial intelligence (AI) will pervade almost every aspect of the health care delivery system. AI has the potential to improve patient safety (e.g. diagnostic accuracy) as well as reduce the burden on clinicians (e.g. documentation-related workload); however, these benefits are yet to be realized. AI is only one element of a larger sociotechnical system that needs to be considered for effective AI application. In this paper, we describe the current challenges of integrating AI into clinical care and propose a sociotechnical systems (STS) approach for AI design and implementation. We demonstrate the importance of an STS approach through a case study on the design and implementation of a clinical decision support (CDS). In order for AI to reach its potential, the entire work system as well as clinical workflow must be systematically considered throughout the design of AI technology.</p>","PeriodicalId":46342,"journal":{"name":"Journal of Cognitive Engineering and Decision Making","volume":"16 4","pages":"194-206"},"PeriodicalIF":2.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873227/pdf/","citationCount":"8","resultStr":"{\"title\":\"A Sociotechnical Systems Framework for the Application of Artificial Intelligence in Health Care Delivery.\",\"authors\":\"Megan E Salwei, Pascale Carayon\",\"doi\":\"10.1177/15553434221097357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the coming years, artificial intelligence (AI) will pervade almost every aspect of the health care delivery system. AI has the potential to improve patient safety (e.g. diagnostic accuracy) as well as reduce the burden on clinicians (e.g. documentation-related workload); however, these benefits are yet to be realized. AI is only one element of a larger sociotechnical system that needs to be considered for effective AI application. In this paper, we describe the current challenges of integrating AI into clinical care and propose a sociotechnical systems (STS) approach for AI design and implementation. We demonstrate the importance of an STS approach through a case study on the design and implementation of a clinical decision support (CDS). In order for AI to reach its potential, the entire work system as well as clinical workflow must be systematically considered throughout the design of AI technology.</p>\",\"PeriodicalId\":46342,\"journal\":{\"name\":\"Journal of Cognitive Engineering and Decision Making\",\"volume\":\"16 4\",\"pages\":\"194-206\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873227/pdf/\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cognitive Engineering and Decision Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15553434221097357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cognitive Engineering and Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15553434221097357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A Sociotechnical Systems Framework for the Application of Artificial Intelligence in Health Care Delivery.
In the coming years, artificial intelligence (AI) will pervade almost every aspect of the health care delivery system. AI has the potential to improve patient safety (e.g. diagnostic accuracy) as well as reduce the burden on clinicians (e.g. documentation-related workload); however, these benefits are yet to be realized. AI is only one element of a larger sociotechnical system that needs to be considered for effective AI application. In this paper, we describe the current challenges of integrating AI into clinical care and propose a sociotechnical systems (STS) approach for AI design and implementation. We demonstrate the importance of an STS approach through a case study on the design and implementation of a clinical decision support (CDS). In order for AI to reach its potential, the entire work system as well as clinical workflow must be systematically considered throughout the design of AI technology.