{"title":"利用工程酿酒酵母K6生产s -甲基蛋氨酸。","authors":"Jun-Min Lee, Min-Ho Park, Bu-Soo Park, Min-Kyu Oh","doi":"10.1093/jimb/kuad026","DOIUrl":null,"url":null,"abstract":"<p><p>S-methyl-methionine (SMM), also known as vitamin U, is an important food supplement produced by various plants. In this study, we attempted to produce it in an engineered microorganism, Saccharomyces cerevisiae, by introducing an MMT gene encoding a methionine S-methyltransferase from Arabidopsis thaliana. The S. cerevisiae sake K6 strain, which is a Generally Recognized as Safe (GRAS) strain, was chosen as the host because it produces a significant amount of S-adenosylmethionine (SAM), a precursor of SMM. To increase SMM production in the host, MHT1 and SAM4 genes encoding homocysteine S-methyltransferase were knocked out to prevent SMM degradation. Additionally, MMP1, which encodes S-methyl-methionine permease, was deleted to prevent SMM from being imported into the cell. Finally, ACS2 gene encoding acetyl-CoA synthase was overexpressed, and MLS1 gene encoding malate synthase was deleted to increase SAM availability. Using the engineered strain, 1.92 g/L of SMM was produced by fed-batch fermentation.</p><p><strong>One-sentence summary: </strong>Introducing a plant-derived MMT gene encoding methionine S-methyltransferase into engineered Saccharomyces cerevisiae sake K6 allowed microbial production of S-methyl-methionine (SMM).</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"50 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Production of S-methyl-methionine using engineered Saccharomyces cerevisiae sake K6.\",\"authors\":\"Jun-Min Lee, Min-Ho Park, Bu-Soo Park, Min-Kyu Oh\",\"doi\":\"10.1093/jimb/kuad026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>S-methyl-methionine (SMM), also known as vitamin U, is an important food supplement produced by various plants. In this study, we attempted to produce it in an engineered microorganism, Saccharomyces cerevisiae, by introducing an MMT gene encoding a methionine S-methyltransferase from Arabidopsis thaliana. The S. cerevisiae sake K6 strain, which is a Generally Recognized as Safe (GRAS) strain, was chosen as the host because it produces a significant amount of S-adenosylmethionine (SAM), a precursor of SMM. To increase SMM production in the host, MHT1 and SAM4 genes encoding homocysteine S-methyltransferase were knocked out to prevent SMM degradation. Additionally, MMP1, which encodes S-methyl-methionine permease, was deleted to prevent SMM from being imported into the cell. Finally, ACS2 gene encoding acetyl-CoA synthase was overexpressed, and MLS1 gene encoding malate synthase was deleted to increase SAM availability. Using the engineered strain, 1.92 g/L of SMM was produced by fed-batch fermentation.</p><p><strong>One-sentence summary: </strong>Introducing a plant-derived MMT gene encoding methionine S-methyltransferase into engineered Saccharomyces cerevisiae sake K6 allowed microbial production of S-methyl-methionine (SMM).</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuad026\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuad026","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
s -甲基蛋氨酸(S-methyl-methionine,简称SMM),又称维生素U,是多种植物产生的重要食物补充剂。在这项研究中,我们试图通过引入来自拟南芥的编码蛋氨酸s -甲基转移酶的MMT基因,在工程微生物酿酒酵母中生产它。之所以选择酿酒酵母K6菌株作为宿主,是因为它能产生大量的s -腺苷蛋氨酸(SAM),这是SMM的前体。为了增加宿主体内SMM的产生,敲除编码同型半胱氨酸s -甲基转移酶的MHT1和SAM4基因以阻止SMM的降解。此外,编码s -甲基蛋氨酸渗透酶的MMP1被删除,以防止SMM输入细胞。最后,通过过表达编码乙酰辅酶a合成酶的ACS2基因,删除编码苹果酸合成酶的MLS1基因来提高SAM的有效性。利用该工程菌株进行补料分批发酵,SMM产量为1.92 g/L。摘要:将一种编码蛋氨酸s -甲基转移酶的植物源性MMT基因引入工程酿酒酵母K6中,使微生物生产s -甲基蛋氨酸(SMM)成为可能。
Production of S-methyl-methionine using engineered Saccharomyces cerevisiae sake K6.
S-methyl-methionine (SMM), also known as vitamin U, is an important food supplement produced by various plants. In this study, we attempted to produce it in an engineered microorganism, Saccharomyces cerevisiae, by introducing an MMT gene encoding a methionine S-methyltransferase from Arabidopsis thaliana. The S. cerevisiae sake K6 strain, which is a Generally Recognized as Safe (GRAS) strain, was chosen as the host because it produces a significant amount of S-adenosylmethionine (SAM), a precursor of SMM. To increase SMM production in the host, MHT1 and SAM4 genes encoding homocysteine S-methyltransferase were knocked out to prevent SMM degradation. Additionally, MMP1, which encodes S-methyl-methionine permease, was deleted to prevent SMM from being imported into the cell. Finally, ACS2 gene encoding acetyl-CoA synthase was overexpressed, and MLS1 gene encoding malate synthase was deleted to increase SAM availability. Using the engineered strain, 1.92 g/L of SMM was produced by fed-batch fermentation.
One-sentence summary: Introducing a plant-derived MMT gene encoding methionine S-methyltransferase into engineered Saccharomyces cerevisiae sake K6 allowed microbial production of S-methyl-methionine (SMM).
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology