减数分裂早期的染色体特异性行为

2区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Current Topics in Developmental Biology Pub Date : 2023-01-01 Epub Date: 2022-08-01 DOI:10.1016/bs.ctdb.2022.05.002
Katherine Kretovich Billmyre
{"title":"减数分裂早期的染色体特异性行为","authors":"Katherine Kretovich Billmyre","doi":"10.1016/bs.ctdb.2022.05.002","DOIUrl":null,"url":null,"abstract":"<p><p>Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"151 ","pages":"127-154"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromosome-specific behaviors during early meiosis.\",\"authors\":\"Katherine Kretovich Billmyre\",\"doi\":\"10.1016/bs.ctdb.2022.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.</p>\",\"PeriodicalId\":55191,\"journal\":{\"name\":\"Current Topics in Developmental Biology\",\"volume\":\"151 \",\"pages\":\"127-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Topics in Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ctdb.2022.05.002\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics in Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctdb.2022.05.002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

遗传错误的染色体数目是导致人类不育和出生缺陷的主要原因之一。然而,在许多生物体中,单个染色体在组织、序列和大小方面都存在巨大差异。染色体分离系统必须能够考虑到这些差异,才能可靠地进行染色体分离。在配子发生过程中,减数分裂可确保所有染色体正确地分离成配子(即卵子或精子)。有趣的是,并非所有染色体在减数分裂过程中都表现出相同的动态,这可能导致染色体特异性行为和缺陷。本综述将总结目前已知的一些染色体特异性减数分裂事件,并讨论它们对减数分裂结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chromosome-specific behaviors during early meiosis.

Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
91
期刊最新文献
Retinoic acid homeostasis and disease. Retinoid signaling in pancreas development, islet function, and disease. Early retinoic acid signaling organizes the body axis and defines domains for the forelimb and eye. Meiosis and retinoic acid in the mouse fetal gonads: An unforeseen twist. Multiple roles for retinoid signaling in craniofacial development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1