Prabhashi W Withana Gamage, Christopher S McMahan, Lianming Wang
{"title":"一种灵活的参数方法,用于分析比例危险模型下可能出现左截断的任意删减数据。","authors":"Prabhashi W Withana Gamage, Christopher S McMahan, Lianming Wang","doi":"10.1007/s10985-022-09579-z","DOIUrl":null,"url":null,"abstract":"<p><p>The proportional hazards (PH) model is, arguably, the most popular model for the analysis of lifetime data arising from epidemiological studies, among many others. In such applications, analysts may be faced with censored outcomes and/or studies which institute enrollment criterion leading to left truncation. Censored outcomes arise when the event of interest is not observed but rather is known relevant to an observation time(s). Left truncated data occur in studies that exclude participants who have experienced the event prior to being enrolled in the study. If not accounted for, both of these features can lead to inaccurate inferences about the population under study. Thus, to overcome this challenge, herein we propose a novel unified PH model that can be used to accommodate both of these features. In particular, our approach can seamlessly analyze exactly observed failure times along with interval-censored observations, while aptly accounting for left truncation. To facilitate model fitting, an expectation-maximization algorithm is developed through the introduction of carefully structured latent random variables. To provide modeling flexibility, a monotone spline representation is used to approximate the cumulative baseline hazard function. The performance of our methodology is evaluated through a simulation study and is further illustrated through the analysis of two motivating data sets; one that involves child mortality in Nigeria and the other prostate cancer.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852023/pdf/","citationCount":"2","resultStr":"{\"title\":\"A flexible parametric approach for analyzing arbitrarily censored data that are potentially subject to left truncation under the proportional hazards model.\",\"authors\":\"Prabhashi W Withana Gamage, Christopher S McMahan, Lianming Wang\",\"doi\":\"10.1007/s10985-022-09579-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The proportional hazards (PH) model is, arguably, the most popular model for the analysis of lifetime data arising from epidemiological studies, among many others. In such applications, analysts may be faced with censored outcomes and/or studies which institute enrollment criterion leading to left truncation. Censored outcomes arise when the event of interest is not observed but rather is known relevant to an observation time(s). Left truncated data occur in studies that exclude participants who have experienced the event prior to being enrolled in the study. If not accounted for, both of these features can lead to inaccurate inferences about the population under study. Thus, to overcome this challenge, herein we propose a novel unified PH model that can be used to accommodate both of these features. In particular, our approach can seamlessly analyze exactly observed failure times along with interval-censored observations, while aptly accounting for left truncation. To facilitate model fitting, an expectation-maximization algorithm is developed through the introduction of carefully structured latent random variables. To provide modeling flexibility, a monotone spline representation is used to approximate the cumulative baseline hazard function. The performance of our methodology is evaluated through a simulation study and is further illustrated through the analysis of two motivating data sets; one that involves child mortality in Nigeria and the other prostate cancer.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852023/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-022-09579-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09579-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A flexible parametric approach for analyzing arbitrarily censored data that are potentially subject to left truncation under the proportional hazards model.
The proportional hazards (PH) model is, arguably, the most popular model for the analysis of lifetime data arising from epidemiological studies, among many others. In such applications, analysts may be faced with censored outcomes and/or studies which institute enrollment criterion leading to left truncation. Censored outcomes arise when the event of interest is not observed but rather is known relevant to an observation time(s). Left truncated data occur in studies that exclude participants who have experienced the event prior to being enrolled in the study. If not accounted for, both of these features can lead to inaccurate inferences about the population under study. Thus, to overcome this challenge, herein we propose a novel unified PH model that can be used to accommodate both of these features. In particular, our approach can seamlessly analyze exactly observed failure times along with interval-censored observations, while aptly accounting for left truncation. To facilitate model fitting, an expectation-maximization algorithm is developed through the introduction of carefully structured latent random variables. To provide modeling flexibility, a monotone spline representation is used to approximate the cumulative baseline hazard function. The performance of our methodology is evaluated through a simulation study and is further illustrated through the analysis of two motivating data sets; one that involves child mortality in Nigeria and the other prostate cancer.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.