基于模型的多元主成分回归方法:选择主成分和估计非标准化回归系数的标准误差

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS British Journal of Mathematical & Statistical Psychology Pub Date : 2023-02-05 DOI:10.1111/bmsp.12301
Fei Gu, Mike W.-L. Cheung
{"title":"基于模型的多元主成分回归方法:选择主成分和估计非标准化回归系数的标准误差","authors":"Fei Gu,&nbsp;Mike W.-L. Cheung","doi":"10.1111/bmsp.12301","DOIUrl":null,"url":null,"abstract":"<p>Principal component regression (PCR) is a popular technique in data analysis and machine learning. However, the technique has two limitations. First, the principal components (PCs) with the largest variances may not be relevant to the outcome variables. Second, the lack of standard error estimates for the unstandardized regression coefficients makes it hard to interpret the results. To address these two limitations, we propose a model-based approach that includes two mean and covariance structure models defined for multivariate PCR. By estimating the defined models, we can obtain inferential information that will allow us to test the explanatory power of individual PCs and compute the standard error estimates for the unstandardized regression coefficients. A real example is used to illustrate our approach, and simulation studies under normality and nonnormality conditions are presented to validate the standard error estimates for the unstandardized regression coefficients. Finally, future research topics are discussed.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"76 3","pages":"605-622"},"PeriodicalIF":1.5000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model-based approach to multivariate principal component regression: Selecting principal components and estimating standard errors for unstandardized regression coefficients\",\"authors\":\"Fei Gu,&nbsp;Mike W.-L. Cheung\",\"doi\":\"10.1111/bmsp.12301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Principal component regression (PCR) is a popular technique in data analysis and machine learning. However, the technique has two limitations. First, the principal components (PCs) with the largest variances may not be relevant to the outcome variables. Second, the lack of standard error estimates for the unstandardized regression coefficients makes it hard to interpret the results. To address these two limitations, we propose a model-based approach that includes two mean and covariance structure models defined for multivariate PCR. By estimating the defined models, we can obtain inferential information that will allow us to test the explanatory power of individual PCs and compute the standard error estimates for the unstandardized regression coefficients. A real example is used to illustrate our approach, and simulation studies under normality and nonnormality conditions are presented to validate the standard error estimates for the unstandardized regression coefficients. Finally, future research topics are discussed.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\"76 3\",\"pages\":\"605-622\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12301\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12301","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

主成分回归(PCR)是数据分析和机器学习中的一种流行技术。然而,该技术有两个限制。首先,方差最大的主成分(PCs)可能与结果变量无关。其次,缺乏对非标准化回归系数的标准误差估计使得难以解释结果。为了解决这两个限制,我们提出了一种基于模型的方法,其中包括为多变量PCR定义的两个均值和协方差结构模型。通过估计已定义的模型,我们可以获得推断信息,这将使我们能够测试单个pc的解释能力,并计算非标准化回归系数的标准误差估计。用一个实际的例子来说明我们的方法,并给出了正态和非正态条件下的模拟研究来验证非标准化回归系数的标准误差估计。最后,对未来的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A model-based approach to multivariate principal component regression: Selecting principal components and estimating standard errors for unstandardized regression coefficients

Principal component regression (PCR) is a popular technique in data analysis and machine learning. However, the technique has two limitations. First, the principal components (PCs) with the largest variances may not be relevant to the outcome variables. Second, the lack of standard error estimates for the unstandardized regression coefficients makes it hard to interpret the results. To address these two limitations, we propose a model-based approach that includes two mean and covariance structure models defined for multivariate PCR. By estimating the defined models, we can obtain inferential information that will allow us to test the explanatory power of individual PCs and compute the standard error estimates for the unstandardized regression coefficients. A real example is used to illustrate our approach, and simulation studies under normality and nonnormality conditions are presented to validate the standard error estimates for the unstandardized regression coefficients. Finally, future research topics are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
期刊最新文献
A new Q-matrix validation method based on signal detection theory. Discriminability around polytomous knowledge structures and polytomous functions. Understanding linear interaction analysis with causal graphs. Identifiability analysis of the fixed-effects one-parameter logistic positive exponent model. Regularized Bayesian algorithms for Q-matrix inference based on saturated cognitive diagnosis modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1